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This article is devoted to a conditional stability estimate related to the
ill-posed Cauchy problems for Laplace’s equation in domains with
Lipschitz boundary. It completes the results obtained by Bourgeois
[Conditional stability for ill-posed elliptic Cauchy problems: The case of
! domains (part T), Rapport INRIA 6585, 2008] for domains of class
C"!'. This estimate is established by using an interior Carleman estimate
and a technique based on a sequence of balls which approach the
boundary. This technique is inspired by Alessandrini et al. [Optimal
stability for inverse elliptic boundary value problems with unknown
boundaries, Annali della Scuola Normale Superiore di Pisa 29 (2000),
pp. 755-806]. We obtain a logarithmic stability estimate, the exponent of
which is specified as a function of the boundary’s singularity. Such stability
estimate induces a convergence rate for the method of quasi-reversibility
introduced by Lattées and Lions [Méthode de Quasi-Réversibilité et
Applications, Dunod, Paris, 1967] to solve the Cauchy problems.
The optimality of this convergence rate is tested numerically, precisely a
discretized method of quasi-reversibility is performed by using a
nonconforming finite element. The obtained results show very good
agreement between theoretical and numerical convergence rates.
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1. Introduction

The problem of stability for ill-posed elliptic Cauchy problems plays an important
role in the fields of inverse problems governed by elliptic partial differential
equations (PDEs). It can be considered as a first step to study the stability of many
inverse problems of interest, such as the data completion problem (see Remark 6
hereafter), the inverse obstacle problem [1] or the corrosion detection problem [2].
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This article can be considered as the continuation of [3], and consequently we refer to
the introduction of such article for a more precise description of this subject and
some bibliography. In [3], the following conditional stability result was obtained in
the case of operator P=—A. —k., with ke R.

For a bounded and connected open domain © c R" with C"*! boundary, if T is
an open part of 92, then for all « €]0, 1] there exists C such that for all functions
u € H*(Q) which satisfy

lull iy < M, 1Pull 2y + lull girg) + 10null 22rg) < 6,

for some constant M and sufficiently small 6,

||u|| < CL
HE =" (log(M/8))”

Furthermore, the upper bound x =1 of the exponent cannot be improved.

The result obtained in [l] is a generalization of the one obtained in [4] for
domains with C*° boundary. The proof mainly relies on a Carleman estimate near
the boundary, in which the weight function is expressed in terms of the distance to
the boundary. Since we have to differentiate twice this weight function, we need the
boundary < to be at least C"!. In this article, we now study how such a conditional
stability result can be extended to Lipschitz domains, the boundary of which is not
smooth enough to apply the same method.

We hence consider an open, bounded and connected domain QcCR" the
boundary 92 of which is Lipschitz. In particular, this is equivalent to the fact that Q
satisfies the cone property (see Definition 2.4.1 and Theorem 2.4.7 of [5]). The cone
property implies in particular that there exist 6 € ]0, /2] and Ry > 0 such that for all
Xo € 092, there exists £ € RY, || =1, such that the finite cone

C={xeR", (x —x0).E > |x — xo|cos b, |x — x| < Ro}

is included in €.

As above, I'j denotes an open part of 92 which is ch. Lastly, we assume that & is
not a Dirichlet eigenvalue of the operator —A in . The main result we obtain is that
for all « €0, 1], for all « €]0, (1 + a)xo(6)/2[ there exists C such that for all functions
ue C"(Q) such that Au e L*(2) and

lull oy = M, 1Pull 2@y + llull ) + 1802l 2ry) < 8,

for some constant M and sufficiently small §, then
M
<C—r-"-""—-—. 1
Here, xo(6) is the solution of the following simple maximization problem
1 sinf(l —e™)
ko(0) = = sup—=.
o®) 2 x>}3 1+ x—sin6

The continuous function k is increasing on the segment [0, /2] and ranges from
k0(0) =0 to ko(rr/2) = 1. Since a domain of class C! has a Lipschitz boundary which
satisfies the cone property with any 6 €10, /2[, we obtain that (1) is satisfied for all
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k€]0,(1 +®)/2[ in that case. The analysis of the conditional stability in Lipschitz
domains was already addressed in [1,6], but in these works, the exponent of the
logarithm was not specified. This is the main novelty of this article to specify the
exponent as a function of the geometric singularity. It is obtained by using a
sequence of three spheres inequalities, the sequence of centres of these spheres
approaching the boundary, and the sequence of radii tending to 0. This technique is
borrowed from [1], with two differences. First, the three spheres inequalities result
from Carleman estimates instead of doubling properties. Second, we perform an
optimization of this sequence of inequalities in order to obtain the best possible
logarithmic exponent.

Another concern is to obtain a convergence rate for the method of quasi-
reversibility to solve the ill-posed Cauchy problems for the operator P. This requires
a stability estimate for functions that are only in H*(2). For N =2, we obtain that for
all k €10, ko(6)/2[ there exists C such that for all functions u € H*(S2) which satisfy

”u”HZ(Q) =M, ||PU||L2(Q) + ||u||H‘(Fo) + 10null r2ry) =9,

for some constant M and sufficiently small §, then

ull gy < C L
TE =T (log(M/8))"
For N =3, we have the same result for all « €0, ko(0)/4[. As a consequence, we prove
a logarithmic convergence rate for the method of quasi-reversibility, with the limit
exponent xo(6)/2 in 2D and ky(#)/4 in 3D, possibly ky(#) provided we assume
additional regularity for the solution of quasi-reversibility and the ‘true’ solution.

From a numerical point of view, a connected question is to determine if the
influence of the geometric singularity on the logarithmic exponent can be actually
observed in numerical experiments. An easy way to test this is to capture the
convergence rate of a discretized method of quasi-reversibility for a fixed refined mesh,
when the regularization parameter tends to 0. In 2D, we analyse this convergence rate
as a function of the smallest angle of a polygonal domain, and observe a pretty good
agreement between numerical and theoretical convergence rates.

The article is organized as follows. In Section 2, we establish some preliminary
useful results related to the three spheres inequality. Section 3 is devoted to the
estimate up to the Lipschitz boundary, which leads to the main results of conditional
stability in Q. Lastly, in Section 4, we derive from this conditional stability some
convergence rate for the method of quasi-reversibility in Lipschitz domains.
It enables us to compare such convergence rate with the convergence rate obtained
numerically by using a discretized method of quasi-reversibility, and hence to test
the optimality of our stability estimate.

2. Some preliminary results

This section consists of several lemmas that will be used in next section. They
concern the three spheres inequality. We first recall the following interior Carleman
estimate.

LemMmA 2.1 We consider the operator P=—A. —ak. with a, ke R, a€]0, 1[. Let w, U
denote two bounded and open domains with w C U C RY. Let ¢ be a smooth function
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defined in U such that V¢ does not vanish in U. Let us denote Py = het o Poet, and
DPo(x, &) the principal part of operator Py, We assume that

1 >0, pp(x,6)=0 and (,&eUxRY = (Repy, Impyl(x,&) > ci. (2)

Then there exist K, hy > 0, with K independent of ak, with hy depending on ak only
through |k|, such that Yh €10, ho[, we have

f WP dx + 12 / \Vul?e? dx < Ki? / |Pul?e? dx, 3)

Sor all function ue H\(w,A), where Hj(w,A) is the closure of C{(w) in

H'(w,A) = {uec H (w), Aue L}(w)}.

Proof The inequality (3) is obtained in [7] for k=0, that is in the case of the Laplace
operator —A. There exist K, hy > 0, such that Vi €]0, ho[, we have for all functions
ue Hi(w,A)

/ e dx + hz/ \Vul2e® dx < Ki® / |Pu + akul*¢* dx.

w

Since |Pu+ aku|® <2(|Pul*+ k*u?), if we assume that in addition / satisfies
2KKk*h* < 1/2, we obtain (3) provided we replace K by 4K on the right-hand side
of the inequality. u

A short calculation shows that

Repy = €17 — [Vo*, Imp, =2EVe

and

a@

(Re pg. Im py) = 4 ,:ZI V<a¢).<§/s + g—)‘fjw).
One considers now a smooth function v defined on U such that Viy#0 on U, and
for a > 0, ¢p(x) =e*¥™. We obtain

{Re py, Im py} = dag (8. V2Y.& + P2 (VY. VY. VY) + a(6.VY) + 27| Vi|*),
whence by denoting 1o(x) the smallest eigenvalue of V2(x),
(Repy. Im py) = dop(io(l&)” + 0’|V P) + a(6.VY)* + &’ | Vyl?).
For py(x,£) =0, we have
& = o’ ¢* | VY’ £V =0,

whence

{Repy, Impy} = 4’ ¢’ | VY| (210 + | VY ).
If we define

mo == inf puo(x), ¢o:= inf |Vy|?,

xeU xelU
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and if my < 0, we have {Repy, Impy} >c; >0 on U x RY when Pp(x,8) =0 for

a> —2 @.
€o
We now consider the particular domain w= B(R;, Ry):={x e R", R; < |x —¢| < R,}
with ¢ € R”, and the function ¥(x)=—|x — q|2. We can take U= B(q, R —¢, Ry+¢)
for small ¢ > 0. We obtain my=—2 and ¢;=4(R, —¢)*, and finally assumption (2)
holds as soon as & > 1/R3.

We now apply Lemma 2.1 and Lemma 3 in [3] to obtain a so-called three spheres
inequality. The proof of such inequality is classical [4,8], but it is reproduced here in
order to find how the constants involved in the inequality depend on some useful
parameters.

LeEMMA 2.2 We consider the operator P=—A—ak. with a,keR and a€]0,1].
Let qeQ, and let 0 <rqg <1 <1 <r3<rs<rs<rg such that B(q,r¢) CQ. If «
satisfies ar > 1, then there exists a constant C, which depends on ak only through |k|,
such that we have for all ue H(S, A),

||u||H1(B(q,r3)) = C(”Pu”LZ(B(q,r(,)) + ||U||H1(B(q,r2)))‘$'||U||Z;:(B(q,,,6)), 4)
with
_ g(r3) — g(ry) e
e —gn) S0=C
Proof One applies Lemma 2.1 in the domain w=B(ry,rs) for ¢p=e*" with
W(x) = —|x —¢|*>. We have seen that assumption (2) is satisfied as soon as arg > 1.

Assuming that this inequality holds, we obtain there exists K, /iy > 0 such that for
0 < h < hy (K does not depend on ak, hy depends on ak only through |k]),

/(|v|2 VP dx < K/ |Pv2e? dx, (5)
for all functions v € H)(w, A).

Now we take ue H'(S,A) and v = xu € Hj(w,A), where x is a C™ cut-off
function such that y €[0, 1] and

x=0 in B(ro,r1) U B(rs, 16)
X = 1 in B(r2,1‘4).

o

In the following we denote g(r)=¢~ " Hence g i1s a non-increasing function.

g(r3)
f (v + [VvP)ei dx > &7 / (lul + |Vul?) dx,
® B(ra,r3)
and

/ |Pv|262% dx = / |Pu|262'¢‘; dx + / IP(xu)|ze‘2% dx + [ |P(xu)|262% dx.
w B(ra.re) B(r1,r2) B(ry,rs)
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Since we have P(xu)= x(Pu)—2Vyx. Vu— (Ax)u, we obtain the following estimates
(K is a constant which depends only on y):

" o)
/ |Pul?e? dx < &7 / |Pul? dx,
B(ra.re) B(ra,rs)

(r) (rp)
/ |P(u) e dx < eZ”T‘/ |Pu|2dx+Ke2”T‘/ (lul* + |Vu?) dx,
B(r1,r2) B(r1,r2) B(r1,r2)
2 20 28ta) 2 28ta) 2 2
[P(xu)|“endx < e |Pul”dx + Ke™ 7 (Jul” 4+ |Vu|~) dx.
B(ry.rs) B(r4.rs) B(ra.rs)

Gathering the above inequalities, it follows that

()
f |Pv|2e dx < Klengl</ | Pul* dx +[ (lu> + |Vul?) dx)
w B(q.r¢) B(g.r)

g(rg)
+ KT / (ul® + |Vu?) dx,
B(q.r6)

where K| and K, are two constants which are independent of ak.
Finally, the inequality (5) implies

<(3)

LI ) 26D 2 2 L)
e T Nl gy = Kie™7 (”P Ul gy + ”u”H‘(B(qJ'z))> + Ko el sig.r)-
Using

2 2 2
ez gy = Nl squrany + 1 30 oy

we obtain

£0r3) £ry) £00)
T ullFp sigrny < Ki €7 (||Pu||iz(3(q,r6» + ||u||§,1(3<q,,.2))) + Ky €7 (|l 31 0.0
Denoting ky=g(ry) — g(r3) > 0 and k, =g(r3) — g(r4) > 0, we obtain

i s
l2tll 11 gy < Kt € (1Pl 200y + et 1 Bgrryy) + K2 € Mt g 1)

Let s > 0 and ¢ > 0 such that

k k
- KleTl, &= Kze’TIZ.
€
A simple calculation proves that
_ ky _ g(r3) — g(rs)
ki g(r) —g(r3)’

and we obtain for all u e H'(Q, A), for all & €]0, go[ with

4
60 = K&/,

c=K, (Kz)(k‘/kz),

the inequality

C .
el 21 (Bigryy) =< g(”P ull 22(8g.re)) + el 1) + & 1l bt (Bgure))-
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The constant ¢ does not depend on ak, €y depends on ak only through |k|. It remains
to apply Lemma 3 in [3], since ||ull z(B(g.ry)) < Ul t1(B(g.re))- |

LeEmMMA 2.3 Let us denote Py the operator —A. —k., with ke R. Let g€ 2, and let
0<ry<F <P <F3<ry<TFs <Tg such that B(q,7¢) C Q. Consider now q € Q and

for nelo, 1], r; = ur; (i=1,2,...,6), with B(q, rs) C Q.

We assume that the three spheres inequality (4) associated with the operator P,y
and the sequence of balls B(q, r;) is satisfied with the constants C and s. Then the three
spheres inequality (4) associated with the operator Py and the sequence of balls B(q,r;)
is satisfied with the constants C = C /i and s.

Proof  The proof relies on the change of variables x — ¢ = u(X — ¢g). We define the
function 4 as #(X) = u(x) = (g + (x — q)/ ).
We obtain

o I . -
f ()2 + V() > dx = MN< f |u(x>|2+2|w(x)|2dx),
B(g.r) B(G. F) M
whence

N oo N 1, ~
w2 llull s,y < Nellmgry < #2 1ullms@ )

Similarly, we obtain

Yoyp o
| Pl r2Bigryy = w2 NP2kl 1208, 7))

By using the three spheres inequality (4) associated with the balls B(g, ;) for operator
P2, we obtain

N_ 1.~
el 1 sigarsyy < 27 il i g, 7))
N ~ ~ el
< Cu (1P kil 23 7oy + 12l 2 G 72)) Il G 700

AR 1 /] e}
< Cu>™ | =5 1Prull t2Big.rey) + — el 11 (Big.r) — 1l 0 (B(g.re))
I,LZ l/LZ I,LZ

c -
= ; (”Pku”Lz(B(q,r(,)) + ”u”H](B(q,rz)))»‘H ”u”;;{(B(q’,.()))a

which completes the proof. |

3. The two main theorems

Our main theorems are based on the following proposition, which is similar to
Proposition 4 in [3]. It concerns the propagation of data from the interior of the
domain up to the boundary of such domain. However, it should be noted that in
Proposition 4 of [3], we estimated the H' norm of the function in a neighbourhood of
a point x, € 92 with the help of the H' norm of the function in an open domain
w; € Q. Here, we estimate the value of the function and its first derivatives at x, with
the help of the H' norm of the function in ;. As a result, the regularity assumptions
concerning the function u are not the same as in [3].
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ProrosiTioN 3.1  There exists an open domain w; € Q such that for all « €10, 1], for
all k < aro(0) and k' < ko(0), with
1 sinf(1 —e™)
ko(0) = = sup——, 6
o 2x>13 14+ x—sind ©)
there exists ¢ > 0 such that for sufficiently small e, for all u e C*(Q) with Au € L*(2),

lull 1oy < e“U1Pull 2y + Null i1 (@) + €€ Null CH4(S),

lull coagy < €1 Pul g2y + Null o) + € lluell C(R).
The second inequality holds also in the case a =0.

In order to obtain Proposition 3.1, we need the two following lemmas. The first
one is a minor generalization of the lemma proved in [8] in the particular case u =1,
while the second one is the counterpart of Lemma 3 in [3].

Lemma 3.2 Let B, > 0 satisfy for neN,
1 v —V
ﬂn-&-l = _n(lgn +A) Bl 5
I
with A >0, B> 0, ve]0,1[, n€]0, 1] and B, < B. Then one has for n e N
Zﬁ V' opl—y!
ﬁnSE(ﬂO_’_A) B .
I—v

Proof 1f B < By+ A, the proof is complete. If By+ 4 < B, in particular 4 < B, we
have

B B

A 1 (A" 1 (B, +A4\"
<—=)<— .
B~ u"\B) — u B

From the two above inequalities, it follows that

ﬂn+1 + A < L (ﬁn + A>V
2B '\ 2%B )

,3n+l < L (ﬂn + A>U
=

and

that is

Xy Bt

Xn+1 S n-— T .
2=B

n’

By iterating the above inequality, we obtain

1 n—1-+n=2)v+(n—3)v> 4412
n
Xp = <_ xg
W

1 (=1 (141412 4-41"72) 1 =
V!I ]/‘I
w w



07:54 25 May 2010

Downl oaded By: [Bourgeois, Laurent] At:

Applicable Analysis 9
whence
2 Vo
Bn <—=(Bo+A)" B,
M=y
which completes the proof. |
Lemma 3.3 Let C, B, A and B denote four non-negative reals and v € 10, 1] such that
B<CA"B"™.
Then Ve > 0,
¢
B<-A+¢ B,
&

with

s+1
v _ C B
S=1=0 T e £ g6t )

Proof For ¢,s > 0 as defined in the statement of the lemma, the minimum of the
function f defined for ¢ > 0 by

f(s)ngJreSB

is CA"B'™", which completes the proof. |

Proof of proposition 3.1 The proof is divided into three parts. In the first step of the
proof we follow the technique of [1], which consists in defining a sequence of balls the
radii of which is decreasing and the centre of which is approaching the boundary
of the domain. Since 2 satisfies the cone property (see our definition in the
introduction), there exist Ry > 0, 6 €]0, 7/2[ with R, and 6 independent of x, € 92,
and & € RY with |&| =1 such that the finite cone

C = {x, |x — xo| < Ro, (x —x¢).£ > |x — x¢| cos 6}
satisfies C C 2. We also denote
C' = {x, |x —x0| < Ry, (x — x0).£ > |x — xg| cos @'},
with
0 = arcsin(z sin 6), (7

where the coefficient 7€]0, I[ will be specified further. It should be noted that
definition (7) leads to 6’ €]0,7/2[. We now denote go=xo+ (Ro/2) &, do=|q0 — Xol
and py=d, sin #'. We hence have B(qo, pg) € C'. Let us define the sequence of balls
B(q,, p,) € C" with d,=|g, — xo| and p,=d,, sin ' by following induction:

Gnt1 = qn — p§
Pnt1 = UPn (®)
dn+l = Mdna
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Figure 1. The sequence of three spheres inequalities.

where «,, and p will be defined further. From the above equations, we deduce that

oy = (1 — wdy. )
The objective is to use a three spheres inequality such as (4) for each n, the centre
of these three spheres being ¢=g¢,. We hence define, for neN, 0 < ry, <ry, <
Fop=Pp < I3y < rFay <Trs, <rg, and y;,,=r;,/ro, > 1 for i=1,...,6. We assume that
the y;, do not depend on n, that is y;, := y,. We specify t =r5,/r¢, = y2/y¢ in (7), so that
we have B(g,, r¢,) € C C Q2 for all n (Figure 1).

On the other hand, if «, is chosen such that
Pnt+1 + 0ty = 13y, (10)

we have B(qn+l> pn+1) C B(Qna r3n) since for |x_CIn+l| < Pn+1»
[X = gnl < 1X = quy1| + 1gns1 — qul < pu1 + 0y = 13,.
Equations (9) and (10) uniquely define u as

Fen — I3, SINO  yg — y3sinf
ren — I'n sin 6 a Y6 — )2 sin @

= €10, 1[.

By using the notation P, = —A. —k., we now apply Lemma 2.2 for operator P,y and
for the spheres of centre ¢y and of radii r;y, with @ such that g := arao > 1. We thus
obtain for ue H'(Q, A),

lleell £ (B(q0730)) = C(”Pltz”ku||L2(B(qu,roo)) + ”u”H](B(Q(W’zo)))ﬁl ”u”;I{(B(q[),r(,(]))’
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with C independent of p and n. With the help of Lemma 2.3, and since r;, = u"r;o for
i=1,...,06, the three spheres inequality for the spheres of centre ¢, and of radii r;, is

C
el i1 (g, ) = o — (1Pl 22,0 + 117 ag) ™ ”u”H‘(B(qnz(,,I))’

which implies that for all u e H'(Q, A),

C
Netll 21 (Biguir, priiy) = e = (1Pull 2@y + el i1 5,) " ”u”H‘(Q)

It should be noted that in the above inequality, C and s are independent of #n, in
particular
e B — B
§=— .
e P — o B%

Without loss of generality we assume that C>1, so that by denoting C'=C**',
||u||H1(B(q”+l’p”+l)) < C’||u||H1(Q), and we can apply Lemma 3.2 with ,3,12 ”u”Hl(B(qmp”))a
A= ||Pu||L2(Q), B= C’||u||H1(Q), v =S/(S+ 1) We obtain

21 A 1=
lletll 21 (Bgo., pyy) = ! (1Pl 22y + el 1 sigonpon) (C'lull i)

We apply now Lemma 3.3 and obtain Ve > 0,

c
Nl e By, o)) = ;ﬂ (||P“||L2(Q) + ||M||H1(B(q0,p0))) + &% C'l|ull g (q)

with

s+l
vn 21 > 1 Sn
Sn =7 = \"=Z ]
! L= ! ,U«ﬁ E(Sn)
and
E(S) — Sl/(x—&-l) 4 S_S/(H—l).

We notice that for s > 0, E(s) > 1, whence

lo | < ! lo 2
g MIVE(S,,) I—v & wrt)
< 2

for some constant ¢ > 0. Here we have used the fact that s,+1 < 1/(1 —v). Since
s, > 1", we finally obtain Vn e N, Ve > 0 and Vu e H'(, A),

log( = 1)

n 11
el st pop = (1Pl @y + lulnisgo ) + €& Nl (11

As a result,
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The second step of the proof consists of estimating the C' norm of « on 92 by using
the estimate (11) for sufficiently large n and the regularity of u, which is C'*(Q),
ael0,1l. We have B(q,,p,) C B(xo,¢) if and only if d,+p,<¢, that is
w'(dy+ po) <&'. Let ng denote the smaller n which satisfies this inequality, that is

log((do + po)/e) _ | _ Tog((do + po)/e)

1.
g/ =~ ogl/u
For all x € B(g,,, p,), and for v=u or v="0u/dx;, i=1,..., N, we have
VO = 2100 + 2l 8™ (12)

After integration over B(g,,, p,,), We obtain by denoting

Sy, (1) = de(

(xo)

)
N 2a

VOS2 = 206l s, py + 2V 80 Tl 2 -

N~ Xo

where Vy is the volume of the unit sphere in R". Finally,

2 i
Sw(u) < /V s, ) V26 Nlroqy: (13)
Ho

From (11) with n=ny and (13), we obtain there exists ¢, C > 0 such that for all
e, & >0,

log( W0~ 1)

73 f (”Pu”LZ(Q) + ||u||H‘(B(qo,ﬂ0)))

no

Sy, () < C—+

1 J1
+C—n " Null oy + C€/a||u||cm(§)

1o

We have [|ull g < ¢ lll crag) for some ¢ > 0. Furthermore, 1"~ (dy+ po) > ¢ and
Pn, = " po lead to

M 144 g
dy + po
We obtain there exists ¢, C > 0 such that for all ¢, & > 0,

Jrioe (o)

Sy () < CS,N—/Zf(”PU”LE(Q) + ”u”H](B(qo,po)))

& V10
+ C< /NJ2 + S/a) ||u||cla(§)_

. . . 7 N . .
Now we introduce the relationship " /&2 = ¢'%, and since V" < | we obtain a new
constant C > 0 such that

sirlog ()

e
Sqw) = C——F5— (||PU||L2(Q) + ”u”Hl(B(qO,po))) + Ca’“||u||cla(§). (14)
&5

Pny
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o — o121V e have
b

. %
log((dy+pg)/e’)
L Josap(dmid ) 1 (do + po
]) 2

U"O 8/

Since 1/v

with yo =log(1/v)/log(1/w).
Furthermore, since 1/u"~" < (dy+ po)/€’, we have

2 2(d,
10g< _ _1> < lOg(M)’
M/ 0 &

)
evno og 2101 - eﬁ((710g< = l)+(a+N)lOg( )) (l’oﬂ’()) ( lo (Z(I,OHU))-&-(O(-FN)IOg( ))

g/(a+N)/v

Then,

As a result, for some new ¢’ > 0, for sufficiently small &’ we have

e"ol g( o~ 1)

7 log(
YT V() gg/)

e;

For all y > yg, for some new ¢ > 0, for sufficiently small &' we have

o ()

&/ (@t M)/

<

< e
Coming back to (14), we obtain

S () < 7 (I1Pull 20y + el 20 (aigo o) + CENtll 1oy
By denoting ¢ =¢’” for any y > y,, for small ¢ > 0,

Sxo(u) <e /S(HPMHLZ(Q) + ”u”H‘(B(qo,pq))) + C/Ea/y”u”@.a(ﬁ)-

13

Finally, by denoting ko= 1/y, for all ¥ < ak, there exists ¢, &y > 0 such that for all

& < &,

Sy (u) < eC/S(HPMHLZ(Q) + ||u||H1(B(qo,p0))) + e"||u||cl4d(§).

By following the history of the constants ¢ and &, throughout the proof, it is readily
seen that ¢ and g, do not depend on x, € 9Q2. Furthermore, if we define w; € 2 as the
union of the balls B(gy, po) when x( describes 9$2, we obtain that for all k < ax, there

exists ¢, o > 0 such that for all £ < g, for all u e C'*(Q) with Aue L*(),
lull cragy < € (I1Pull o) + Nutll111wr)) + €Ml 1oy

which is the first inequality of the proposition.

(15)

The second inequality is obtained by using the embedding C"*(Q) — C'(Q),

for all €0, 1]. For x € B(q,,, 0,,), we replace (12) by

ju(x0)? < 20ux) + 2jul, g,

and we use the same technique as above.
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The third step of the proof consists in maximizing

_ log(1/p)

0T Tog(1/v)

with

I yg—yasing 1 fUiD ]
2 B Y6 — I3 sin@> v PO 1
The inequality (15) holds for all k¥ < ko, with

3 — y2siné B — 1
Ko = sup log(%)/log # . (16)
1<B 1<y <y2<y3<y4s<ye Y6 — y3sinf PO — 1

Now, let us specify 8 and the y; as follows, for k€]0, 1] and § > 0,

B=VI1+k,

yi= 1+,

=y,

v = y(1 4+ k%), (17)

y3 = (1 + k8 + k25),

ya =31 +8+K%),

v6 = y(1 + 8 + 2k35).

A first order expansion in k around 0 for fixed § leads to
log <y6 — ypsin 9) 5sin@

V6 — y3sin 6 1+6—sind + o0s(k),

| PO ’s o248 . .
08 AU 1] T T e — | +os(k)

By passing to the limit £k — 0 and by taking the sup in §, we obtain the following
particular value ko < Ko:

1 sin 6 2
—sup—— Y (s ))
@ =Sy ()
and the optimization problem (6) follows by setting x =28+ 8 > 0. |

Remark 1 We can verify that in fact the values ky and «,, defined by (16) and (6)
respectively, actually satisfy kg = «o. First, we eliminate 8 in (16) simply by using
the change of variables z; = \/By; with i=1,...,6. We obtain

) . ino 22 1
Ko = sup log(W)/log ‘”7; . (18)
l<zi<zm<z3<z4<Zg Ze — Z3 SIn 0 e —

We remark that the function to maximize in (18) is an increasing function of z; and
a decreasing function of zg, that is why we can consider only the asymptotic situation
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z1— z> and zg— z4. In order to simplify the analysis with the remaining variables
75, Z3, Z4, We denote

3 —Zp = k522, Zy —ZIp = 822, Zy) = E,

with § > 0 and lge](), 1[. We obtain

_ 1468 —sin6 2 _
Ko = sup log — —— log N T .
1<50<4.0<k<1 148 —sin® — k§sin6 eQU-RS+(1-k5%)2 _ ]

Furthermore, it is easy to prove that since 26+68 >2(1 — /€)8~ + (1 — /9)52, for fixed
(k,8), the function to maximize is a non-increasing function of zZ > I, so that the
maximum of the function is obtained for Z — 1, and

_ 148—sin6 |
Ko = sup log e — ——— log —— .
0<8,0<k<1 1+8—sinf —kssiné 2(1=k)s+(1-k1)5> _ ]

We notice that for fixed 8, the maximum of the function of two variables is obtained
for k — 0, and a first order expansion in k leads us to the same expression as (6),
that is K9 = «y.

In order to obtain our main theorem, we recall the two following results, the first
one is obtained in [4] while the second one is obtained in [3].

ProrosITION 3.4 Let wy, wy be two open domains such that wg, w, € Q. There exist
s, ¢, & > 0 such that Ve €]0, go[, Yu € HI(Q, A),
¢
el ) < E(”Pu”LZ(Q) A utll 11 (w)) + € Nutll a1 (2)-

PROPOSITION 3.5  Assume Ty C 982 is of class C"' and let xo € Ty and v > 0 such that
0N B(xy, 1) CTy. There exists a neighbourhood wy of xo, there exist s, ¢, gy >0
such that Ve €10, g, for all ue HX(),

¢
lull i1 (@nwy) < E(”Pu”LZ(Q) + lull g ryy + ||anu||L2(F0)) + & lull i g)-

The inequality holds also for all ue C'(Q2) with Aue L*().

We are now in a position to state the main theorem, which is a consequence of
Propositions 3.1, 3.4 and 3.5.

THEOREM 3.6 Let QCRY be a bounded and connected open domain with Lipschitz
boundary. If the cone property is satisfied with angle 6 €10, 7/2[, let ko(6) denote the
solution of the following maximization problem:

1 inf(l —e™~
KO(Q) = —su M .
2 =04/l +x—siné
Let Ty be a non-empty C"' open part of dQ and let us introduce the operator
P=—A.—k., where k is not a Dirichlet eigenvalue of the operator —A in Q.

For a€l0,1], for all k€]0,(14+a)ky(0)/2], there exist C, &y such that for all
8 €10, 80, for all functions ue C*(Q) such that Au e L*(2) and which satisfy

lull oy = My 1Pull2) + lull ey + 19aull2ry) <6, (19)
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where M > 0 is a constant, then

M
<C———. 20
lull gy < (og(M/8)F (20)
If we do not assume that Ty is of class C"", the estimate (20) holds under assumption
(19) provided we restrict to the functions u which satisfy u|r,=0 and 9,u|r,=0.

Proof Assume first that @ €]0, 1]. By using Proposition 3.1, there exists a domain
w1 € Q such that for any ¥ < aky(0) and any k' < ko(6), there exist ¢, &g > 0 such that
for all & < &, for all ue C"*(Q) with Au e LX),

llull 1oy < EC/S(”PHHLZ(Q) + ull i) + €K||”||C1.a(§),
and
lull ooy < €C/E(||PU||L2(Q) + llull (@) + € el 1.y -

If u=0 and d,u=0 on Iy (case 2), since 92N B(xq, 7) C I'y, the extension & of u by 0
in B(x,, ) belongs to H'(Q U B(xy, 7), A). By applying Proposition 3.4 to function 7
in domain QU B(xy,7) and by choosing wy€B(xy,7)NQ°, we obtain that for
sufficiently small ¢, for all u e C'%(Q) such that Aue LX(R),

lullcraay < €/°l| Pull 20y + lull o)

lullcoaey < € Pull 20 + &° lutll ey -
We conclude that if moreover u satisfies assumption (19) then
lullcragy < e7°8 + M, Nulleopgy < €778+ M.

By using the same ¢ optimization procedure as in Corollary 1 of [3], we obtain that
for all k < ako(0) and &’ < Kk((0), there exists C > 0 such that for sufficiently small 8,
M
(log(M/8))

Since k is not a Dirichlet eigenvalue of the operator —A in €2, there exists a constant
C’ > 0 such that for all ue H'(Q, A),

lullcrpe) < Ca—rrmw:  lullcope = C 21
C169) (log(M/9)) lelt)) (21)

lull o) < C'U1Pull 29y + llull mrrpe)- (22)
With the help of an interpolation inequality, we obtain for some constant ¢ > 0,
1/2 1/2
el oy < cllulstogy el ieagy (23)
hence for some new constant c,
1/2 1/2
el 2oy < clluel a4l oy (24)

and it follows from (21) that

M

Ul g < cC——m———— .
lull ooy < (log(M/8)) 72

The result follows from (22).
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If we do not assume that u=0 and 9,u=0 on I'y, but if moreover I' is of class
C"! (case 1), then we can apply Proposition 3.5 in addition to Propositions 3.1 and
3.4, hence for all k < aky(0) and &’ < ko(0), there exist ¢,ey > 0 such that for all
& < &g, for all ue C*(Q) such that Au e L),

lullcrony < €/“U1Pull 2y + Nl iy + 10ntll 12ry)) + e ull crag)»

lull coae) < €C/£(||PU||L2(Q) + lull gy + N0nttll 2(ry)) + &° ltll 1.y

We complete the proof as in case 2.
As concerns the case a=0, the result follows from (24), from the second
inequality of (21), which remains true, and from the fact that |Jullcipe) < M. [ |

Remark 2 1t is readily shown by analysing the variations of the function &y defined
on [0, +00[ by

1 sinf(1 —e™)
2T+ x—sind’

that the maximization problem (6) is well-posed. In particular, the argument x that
maximizes the function is unique. In Figure 2, the graph of function ky is plotted for
increasing values of 6, and the values of function «, are plotted for all values of
0 €[0,/2]. The function « is increasing on the segment [0, /2], with x(0) =0 and
ko(mw/2)=1.

Remark 3 The fact that x(0) =0 indicates that when 6 — 0, which means that the
domain 2 has a cusp, the logarithmic stability does not hold any more. This is
consistent with the result obtained in [1] when the domain is not Lipschitz, then
a logarithmic—logarithmic estimate was established.

ko(x) = (25)

Remark 4 The fact that k(7r/2) = 1 implies that for domains of class C', Theorem 3.6
holds for all ¥ < (1 +«)/2. Hence, in the case of functions uin C1(Q) ¢ H*(Q) (a=1),
Theorem 3.6 extends the result of Corollary 1 in [3], which was satisfied for domains of
class C', to domains of class C', provided either 'y is of class C L1 or we restrict to the
functions u which satisfy u=0 and 9,u=0 on [',. It is also interesting to note that

1
0.9+
0.8}
0.7}
0.6+
0.5}
0.4}
0.3}
0.2}
0.1+

0 2 4 6 8 10 % w16 w8 3wi6 w4 5116 3w Twi6 w2

Figure 2. Left: graph of function ky, for increasing values of 6: /16, 7/10, /6, 7/4, /3, 37/8,
Tr/16, /2. Right: function k().
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in 2D, if @ has only reentrant corners, then the cone property is satisfied for any
0 €10, /2], and Theorem 3.6 holds for all ¥ < 1. Hence, the corners of angle smaller
than 7 deteriorate the exponent of the logarithmic stability, while those of angle larger
than 7 do not. A similar remark can be done in 3D.

Remark 5 The obtained function (25) is greatly dependent on the choice of the
function ¥(x)= —|x —¢|*> which was used in the exponential weight ¢=e¢*" of our
Carleman estimate (3). Besides, the values of «y(f) induced by this choice and given
by (6) are not necessarily optimal, except for 6 = /2, for which we have proved in [3]
that «og(w/2)=1 is optimal. By testing other types of function 1, in particular
Y(x) = —|x — ¢|® with other values of 8> 0 and ¥(x)=—log |x — ¢|, we have found
other functions kg, but taking lower values.

Remark 6 From the proof of Theorem 3.6, we obtain the following corollary
concerning the data completion problem. This problem consists, for a function u that
solves Pu=01in €2 in the sense of distributions, to compute with the help of the values
of u and 9,u on I'y, the values of u and 9,u on the complementary part T.
If ueC"(Q), a€]0,1], solves Pu=0 in  and satisfies lull ooy = M and
||u||C,(r—0) <4, then for all x < ako(0), there exists C, 8y > 0 such that for § < &,
lull 1) = € M/ (log(M/5))".

In a view to derive a convergence rate of the method of quasi-reversibility,
we now study the case of functions that are H*(€2) for N=2 and N =3. We obtain
the following theorem.

THEOREM 3.7  We define the sets Q, Ty and the operator P exactly as in the statement
of Theorem 3.6.

In the case N=2 (respectively N=3), for all ke€l0,ky0)/2] (respectively
k€10, k0(0)/4]), there exist C, &y such that for all §€]0,80[, for all functions
ue HX () which satisfy

lull ey = M, 1Pull 2y + Null gy + 1002l 2y <6, (26)
where M > 0 is a constant, then

M

lull () < CW- (27)

If we do not assume that Ty is of class C"", the estimate (27) holds under assumption
(26) provided we restrict to the functions u which satisfy ulr,=0 and 9,ulr,=0.

Proof By classical embeddings for Sobolev spaces (see e.g. [9], p. 108]), we have that
for N=2, H*(Q) — C"*(Q), for all @ €0, 1[, and for N=3, H*(Q) — C*'/2(Q).

Then the proof is very similar to the proof of Theorem 3.6. For all ¥ < x((0) in the
case N =2 (respectively for all ¥ < ky(0)/2 in the case N =3), there exists ¢ > 0 such
that for sufficiently small ¢, for all u e HX(),

lull oy < €/*(IPull 120y + el g an) + €Nl i)

and then by using propositions 3.4 and 3.5,

lullcoae) = ec/g(”PH”LZ(Q) + el gy + 10null 22ry)) + M1l () -
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Then assumption (26) implies

lull ooy < €78 + M.
By using the same ¢ optimization procedure as in Corollary 1 of [3], we obtain that
there exists C > 0 such that for sufficiently small 4§,

M
lull ooy = C—armre -
O =" (log(M/5)

Combining (22) and (23), we obtain

1/2 1/2
el = CIPul 2@ + 121y Il 4, )-

By using a classical trace inequality, we obtain

1/2 1/2
el = C(IPull 2@ + 1l gy Il g )

which completes the proof. |

4. Application to the method of quasi-reversibility

In this section, we use the stability estimates obtained in previous section to derive a
convergence rate for the quasi-reversibility method, and therefore to complete the
results already obtained in [3,10]. The method of quasi-reversibility, first introduced
in [11], enables one to regularize the ill-posed elliptic Cauchy problems.

Specifically, we consider a bounded and connected open domain  c R" with
Lipschitz boundary and an open part T'y. Now we assume that u € H*(S2) solves the
ill-posed Cauchy problem with data (go,g1) € H'(Iy) x L*(Ty):

Pu=0 in Q
ulr, = &o (28)
8,1u|1~0 =41-

In order to solve the Cauchy problem with these uncorrupted data (go, g;), for o > 0
we consider the formulation of quasi-reversibility, written in the following weak
form: find u, € H*(Q) such that Vve HX(Q), v|r,=d,v|r, =0,
(Pua, PV)Lz(Q) + a(ua, V)HZ(Q) =0
Ualr, = &0 (29)
Onlalr, = &1-
Using Lax—Milgram theorem and introducing the solution u to the system (28), we

easily prove that formulation (29) is well-posed. On the other hand, it follows from
(28) and (29) that there exist constants Cy, C> > 0 such that

e = ullpie) < C1s I1P(e — W)l 2) < Cav/er. (30)

Using (30) and Theorem 3.7 in case 2 for the function u, — u € H*(2), we obtain the
following convergence rate: there exists C > 0 for all k€]0, «o(6)/2[ (respectively
Kk €]0,k0(0)/4]) for N=2 (respectively for N=23), such that for sufficiently small
a>0,

lue — ull ) < CW- (31)
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Note that if additionally we assume that u, —u € H*(2) and

lue — ull ) < C, (32)

with the help of the embeddings H>(2) — C'*(Q) for all A €0, 1[ and H*(Q) —
C"172(Q), the estimate (31) holds for all k € ]0, xo(A)[ (respectively « € ]0, 3ko(6)/4]) for
N =2 (respectively for N =3).

In order to test the optimality of (31), we introduce a discretized weak
formulation of quasi-reversibility, which is associated to the continuous weak
formulation (29). In this view, we consider the particular case N=2, P=—A, and Q
is a polygonal domain. We use the so-called Fraeijs de Veubeke’s finite element
(F.V.1), introduced in [12] and analysed in [13]. This non-conforming finite element,
initially designed to solve plate bending problems, can be also used to solve the
quasi-reversibility formulation (29). In this article, we briefly describe such element,
but a comprehensive analysis of the discretized formulation is postponed in [14].

We consider a regular triangulation 7, of Q (see [15] for definition) such that the
diameter of each triangle K € 7, is bounded by /4. The set Ty consists of the union of
the edges of some triangles K € 7, and the complementary part of the boundary a2
is denoted I'y. We denote W), the set of functions wy, € LZ(Q) such that for all Ke 7T,
wy|x belongs to the space of shape functions Pg in K (see [13] for definition of Py),
and such that the degrees of freedom coincide, that is: the values of the function at
the vertices, the values at the mid-points of the edges of the element, and the mean
values of the normal derivative along each edge.

Then, we define V), as the subset of functions of W), for which the degrees of
freedom on the edges contained in Ty vanish, and ¥, as the subset of functions of W,
for which the degrees of freedom on the edges contained in Ty coincide with the
corresponding values obtained with data g, and g;.

For « > 0, we consider the discretized formulation of quasi-reversibility, written
in the following weak form: find u,, € V, such that for all w, € V),

D { Bt A1 + @t Wi | = 0. (33)
Ke T/,

To analyse convergence when / tends to 0, we introduce the norms |||, and |||y
which are defined, for w, € W), by

2 2 2 2
lwalZe = D Iwallieg:  walliy =D Iwalln -
KET/, KETII

By adapting to our case the arguments used in [16] with Morley’s finite element for
the plate bending problem, we prove that provided u, is smooth enough, then for
fixed o, ||y — ) tgll2,— 0 like & when h— 0, where 7, u, is the interpolate of u,
in W,. By using the estimate (31), we conclude that for small fixed %, we have the
approximate convergence rate in o:

1
o ,C— . 34
(E7% 7Th14||1g1 (log(l/a))K (34)
This is the reason why we hope to capture the logarithmic exponent « by using a
refined mesh.
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0.0
(0,0) 1

20 Q To 20 Lo

Fl 1—‘1

Figure 3. Domains Q under consideration.

In our numerical experiments, we solve the problem (33) with data go=u|r, and
g1 =0, ulr, for different harmonic functions u defined by u,,, = Re(z"), with z=x+1iy
and m=1,2,.... For increasing values of m, the corresponding function u,, is more
and more oscillating, which is likely to deteriorate the convergence rate in « for fixed
h. We stop increasing m as soon as ||uy, , — w1, becomes bigger than 0.1 ||mwjull; s,
that is when / is not sufficiently small to enable the regularization process in «.
In order to test different angles 6, 2 is either a triangle of smaller angle 26 = 7/8,
20=m/5, 26 =m/3, or a pentagon of smaller angle 26 =m/2 (Figure 3). The set Ty
covers 60% of the total boundary 92 in all cases. The size of the mesh /4 is fixed to
1/150, which has to be compared to the edge of length 1 as shown in Figure 3.
Figure 4 represents the function 7, u for u="TRe(z’) in the case 260 =7/3, as well as
the function uy, , — 7,u, where u,, is the solution of (33) for a = 1072, a=10"% and
a=107° In order to capture the dependence of ey — ptall1, o0 @ given by (34),
we plot

log(”uh,rx - JT}ZM” 1,/1) - F(lOg(lOg(l/Ot)))

for functions u = u,,, which correspond to increasing values of m. The first important
result is that the graph of the function F we obtain is actually a line of negative slope,
which is an experimental confirmation of the logarithmic stability we have
established. Furthermore, we remark that this slope is decreasing with m, as
predicted above. Figure 5 clearly illustrates this fact, in the case 20=mx/3, for
m=2,3,5. The second and main important result is the way the slope depends on the
smaller angle 26 of the polygon. As can be seen in Figure 6, the slope of F is
increasing as a function of 6 for fixed m, as predicted by (6). More precisely, we
observe that for increasing values of m, the slope tends asymptotically to some value
which is approximately the value «o(6) given by (6), in particular for small values of 6.
Hence, it turns out that our estimate (31) for any x < xo(f) (with the additional
regularity assumption (32)), which is not proved to be optimal, seems not far away
from optimality.
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0.2
o1 o1

Figure 4. Exact solution Re(z ) for angle 20 =r/ 3 discrepancy between the retrieved and the
exact solution for «=10"2, «=10"* and «=10"°.

-3 | | | | |
0.8 1 1.2 1.4 1.6 1.8 2 22 24 26

Figure 5. Function F for 20=mx/3 and m=2,3,5.



07:54 25 May 2010

[ Bourgeoi s, Laurent] At:

Downl oaded By:

Applicable Analysis 23
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Figure 6. Slope of the linear function F as a function of m, for 20 =nr/8, n/5, n/3, 7/2,
compared to the theoretical slope k((6).
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