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This article is devoted to a conditional stability estimate related to the
ill-posed Cauchy problems for Laplace’s equation in domains with
Lipschitz boundary. It completes the results obtained by Bourgeois
[Conditional stability for ill-posed elliptic Cauchy problems: The case of
C1,1 domains ( part I ), Rapport INRIA 6585, 2008] for domains of class
C1,1. This estimate is established by using an interior Carleman estimate
and a technique based on a sequence of balls which approach the
boundary. This technique is inspired by Alessandrini et al. [Optimal
stability for inverse elliptic boundary value problems with unknown
boundaries, Annali della Scuola Normale Superiore di Pisa 29 (2000),
pp. 755–806]. We obtain a logarithmic stability estimate, the exponent of
which is specified as a function of the boundary’s singularity. Such stability
estimate induces a convergence rate for the method of quasi-reversibility
introduced by Lattès and Lions [Méthode de Quasi-Réversibilité et
Applications, Dunod, Paris, 1967] to solve the Cauchy problems.
The optimality of this convergence rate is tested numerically, precisely a
discretized method of quasi-reversibility is performed by using a
nonconforming finite element. The obtained results show very good
agreement between theoretical and numerical convergence rates.

Keywords: Carleman estimate; Cauchy problem; Lipschitz domain; quasi-
reversibility; stability estimate
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1. Introduction

The problem of stability for ill-posed elliptic Cauchy problems plays an important
role in the fields of inverse problems governed by elliptic partial differential
equations (PDEs). It can be considered as a first step to study the stability of many
inverse problems of interest, such as the data completion problem (see Remark 6
hereafter), the inverse obstacle problem [1] or the corrosion detection problem [2].
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This article can be considered as the continuation of [3], and consequently we refer to

the introduction of such article for a more precise description of this subject and

some bibliography. In [3], the following conditional stability result was obtained in

the case of operator P¼�D. �k., with k2R.
For a bounded and connected open domain ��R

N with C1,1 boundary, if �0 is

an open part of @�, then for all �2 ]0, 1[ there exists C such that for all functions

u2H2(�) which satisfy

kukH2ð�Þ �M, kPukL2ð�Þ þ kukH1ð�0Þ
þ k@nukL2ð�0Þ

� �,

for some constant M and sufficiently small �,

kukH1ð�Þ � C
M

ðlogðM=�ÞÞ�
:

Furthermore, the upper bound �¼ 1 of the exponent cannot be improved.
The result obtained in [1] is a generalization of the one obtained in [4] for

domains with C1 boundary. The proof mainly relies on a Carleman estimate near

the boundary, in which the weight function is expressed in terms of the distance to

the boundary. Since we have to differentiate twice this weight function, we need the

boundary @� to be at least C1,1. In this article, we now study how such a conditional

stability result can be extended to Lipschitz domains, the boundary of which is not

smooth enough to apply the same method.
We hence consider an open, bounded and connected domain ��R

N the

boundary @� of which is Lipschitz. In particular, this is equivalent to the fact that �

satisfies the cone property (see Definition 2.4.1 and Theorem 2.4.7 of [5]). The cone

property implies in particular that there exist � 2 ]0,�/2[ and R04 0 such that for all

x02 @�, there exists �2R
N, j�j ¼ 1, such that the finite cone

C ¼ fx2R
N, ðx� x0Þ:�4 jx� x0j cos �, jx� x0j5R0g

is included in �.
As above, �0 denotes an open part of @� which is C1,1. Lastly, we assume that k is

not a Dirichlet eigenvalue of the operator �D in �. The main result we obtain is that

for all �2 [0, 1], for all �2 ]0, (1þ �)�0(�)/2[ there exists C such that for all functions

u2C1,�ð�Þ such that Du2L2(�) and

kukC1,�ð�Þ �M, kPukL2ð�Þ þ kukH1ð�0Þ
þ k@nukL2ð�0Þ

� �,

for some constant M and sufficiently small �, then

kukH1ð�Þ � C
M

ðlogðM=�ÞÞ�
: ð1Þ

Here, �0(�) is the solution of the following simple maximization problem

�0ð�Þ ¼
1

2
sup
x40

sin �ð1� e�xÞffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

� sin �
:

The continuous function �0 is increasing on the segment [0,�/2] and ranges from

�0(0)¼ 0 to �0(�/2)¼ 1. Since a domain of class C1 has a Lipschitz boundary which

satisfies the cone property with any � 2 ]0,�/2[, we obtain that (1) is satisfied for all
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�2 ]0, (1þ �)/2[ in that case. The analysis of the conditional stability in Lipschitz
domains was already addressed in [1,6], but in these works, the exponent of the
logarithm was not specified. This is the main novelty of this article to specify the
exponent as a function of the geometric singularity. It is obtained by using a
sequence of three spheres inequalities, the sequence of centres of these spheres
approaching the boundary, and the sequence of radii tending to 0. This technique is
borrowed from [1], with two differences. First, the three spheres inequalities result
from Carleman estimates instead of doubling properties. Second, we perform an
optimization of this sequence of inequalities in order to obtain the best possible
logarithmic exponent.

Another concern is to obtain a convergence rate for the method of quasi-
reversibility to solve the ill-posed Cauchy problems for the operator P. This requires
a stability estimate for functions that are only inH2(�). For N¼ 2, we obtain that for
all �2 ]0, �0(�)/2[ there exists C such that for all functions u2H2(�) which satisfy

kukH2ð�Þ �M, kPukL2ð�Þ þ kukH1ð�0Þ
þ k@nukL2ð�0Þ

� �,

for some constant M and sufficiently small �, then

kukH1ð�Þ � C
M

ðlogðM=�ÞÞ�
:

For N¼ 3, we have the same result for all �2 ]0, �0(�)/4[. As a consequence, we prove
a logarithmic convergence rate for the method of quasi-reversibility, with the limit
exponent �0(�)/2 in 2D and �0(�)/4 in 3D, possibly �0(�) provided we assume
additional regularity for the solution of quasi-reversibility and the ‘true’ solution.

From a numerical point of view, a connected question is to determine if the
influence of the geometric singularity on the logarithmic exponent can be actually
observed in numerical experiments. An easy way to test this is to capture the
convergence rate of a discretizedmethod of quasi-reversibility for a fixed refinedmesh,
when the regularization parameter tends to 0. In 2D, we analyse this convergence rate
as a function of the smallest angle of a polygonal domain, and observe a pretty good
agreement between numerical and theoretical convergence rates.

The article is organized as follows. In Section 2, we establish some preliminary
useful results related to the three spheres inequality. Section 3 is devoted to the
estimate up to the Lipschitz boundary, which leads to the main results of conditional
stability in �. Lastly, in Section 4, we derive from this conditional stability some
convergence rate for the method of quasi-reversibility in Lipschitz domains.
It enables us to compare such convergence rate with the convergence rate obtained
numerically by using a discretized method of quasi-reversibility, and hence to test
the optimality of our stability estimate.

2. Some preliminary results

This section consists of several lemmas that will be used in next section. They
concern the three spheres inequality. We first recall the following interior Carleman
estimate.

LEMMA 2.1 We consider the operator P¼�D. �ak. with a, k2R, a2 ]0, 1[. Let !, U
denote two bounded and open domains with ! � U � R

N. Let � be a smooth function
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defined in U such that r� does not vanish in U. Let us denote P� ¼ h2e
�
h � P � e�

�
h, and

p�(x, �) the principal part of operator P�. We assume that

9c1 4 0, p�ðx, �Þ ¼ 0 and ðx, �Þ 2U�R
N
) fRe p�, Im p�gðx, �Þ � c1: ð2Þ

Then there exist K, h04 0, with K independent of ak, with h0 depending on ak only

through jkj, such that 8h2 ]0, h0[, we haveZ
!

u2e2
�
h dxþ h2

Z
!

jruj2e2
�
h dx � Kh3

Z
!

jPuj2e2
�
h dx, ð3Þ

for all function u2H1
0ð!,DÞ, where H1

0ð!,DÞ is the closure of C10 ð!Þ in

H1(!,D)¼ {u2H1(!), Du2L2(!)}.

Proof The inequality (3) is obtained in [7] for k¼ 0, that is in the case of the Laplace

operator �D. There exist K, h04 0, such that 8h2 ]0, h0[, we have for all functions

u2H1
0ð!,DÞ Z

!

u2e2
�
h dxþ h2

Z
!

jruj2e2
�
h dx � Kh3

Z
!

jPuþ akuj2e2
�
h dx:

Since jPuþ akuj2� 2(jPuj2þ k2u2), if we assume that in addition h satisfies

2Kk2h35 1/2, we obtain (3) provided we replace K by 4K on the right-hand side

of the inequality. g

A short calculation shows that

Re p� ¼ j�j
2 � jr�j2, Im p� ¼ 2�:r�

and

fRe p�, Im p�g ¼ 4
Xn
j¼1

r
@�

@xj

� �
: �j� þ

@�

@xj
r�

� �
:

One considers now a smooth function  defined on U such that r 6¼ 0 on U, and

for �4 0, �(x)¼ e� (x). We obtain

fRe p�, Im p�g ¼ 4�� �t:r2 :� þ �2�2ðrt :r2 :r Þ þ �ð�:r Þ2 þ �3�2jr j4
� �

,

whence by denoting 	0(x) the smallest eigenvalue of r2 (x),

fRe p�, Im p�g � 4�� 	0ðj�j
2 þ �2�2jr j2Þ þ �ð�:r Þ2 þ �3�2jr j4

� �
:

For p�(x, �)¼ 0, we have

j�j2 ¼ �2�2jr j2, �:r ¼ 0,

whence

fRe p�, Im p�g � 4�3�3jr j2 2	0 þ �jr j
2

� �
:

If we define

m0 :¼ inf
x2U

	0ðxÞ, c0 :¼ inf
x2U
jr j2,

4 L. Bourgeois and J. Dardé
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and if m05 0, we have {Re p�, Im p�}� c14 0 on U�R
N when p�(x, �)¼ 0 for

�4 � 2
m0

c0
:

We now consider the particular domain !¼B(R1,R2) :¼ {x2R
N, R15 jx� qj5R2}

with q2R
N, and the function  (x)¼�jx� qj2. We can take U¼B(q,R1 �",R2þ")

for small "4 0. We obtain m0¼�2 and c0¼ 4(R1 �")
2, and finally assumption (2)

holds as soon as �4 1=R2
1.

We now apply Lemma 2.1 and Lemma 3 in [3] to obtain a so-called three spheres

inequality. The proof of such inequality is classical [4,8], but it is reproduced here in

order to find how the constants involved in the inequality depend on some useful

parameters.

LEMMA 2.2 We consider the operator P¼�D� ak. with a, k2R and a2 ]0, 1[.

Let q2�, and let 05 r05 r15 r25 r35 r45 r55 r6 such that B(q, r6)��. If �
satisfies �r20 4 1, then there exists a constant C, which depends on ak only through jkj,

such that we have for all u2H1(�,D),

kukH1ðBðq,r3ÞÞ � C kPukL2ðBðq,r6ÞÞ þ kukH1ðBðq,r2ÞÞ

� � s
sþ1kuk

1
sþ1

H1ðBðq,r6ÞÞ
, ð4Þ

with

s ¼
gðr3Þ � gðr4Þ

gðr1Þ � gðr3Þ
, gðrÞ ¼ e��r

2

:

Proof One applies Lemma 2.1 in the domain !¼B(r0, r6) for �¼ e� with

 (x)¼�jx� qj2. We have seen that assumption (2) is satisfied as soon as �r20 4 1.

Assuming that this inequality holds, we obtain there exists K, h04 0 such that for

05 h5 h0 (K does not depend on ak, h0 depends on ak only through jkj),

Z
!

ðjvj2 þ jrvj2Þe2
�
h dx � K

Z
!

jPvj2e2
�
h dx, ð5Þ

for all functions v2H1
0ð!,DÞ.

Now we take u2H1(�,D) and v ¼ 
u2H1
0ð!,DÞ, where 
 is a C1 cut-off

function such that 
2 [0, 1] and


 ¼ 0 in Bðr0, r1Þ [ Bðr5, r6Þ

 ¼ 1 in Bðr2, r4Þ:

�

In the following we denote g(r)¼ e��r
2

. Hence g is a non-increasing function.

Z
!

ðjvj2 þ jrvj2Þe2
�
h dx � e2

gðr3Þ

h

Z
Bðr2,r3Þ

ðjuj2 þ jruj2Þ dx,

andZ
!

jPvj2e2
�
h dx ¼

Z
Bðr2,r4Þ

jPuj2e2
�
h dxþ

Z
Bðr1,r2Þ

jPð
uÞj2e2
�
h dxþ

Z
Bðr4,r5Þ

jPð
uÞj2e2
�
h dx:
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Since we have P(
u)¼
(Pu)� 2r
. ru� (D
)u, we obtain the following estimates

(K is a constant which depends only on 
):Z
Bðr2,r4Þ

jPuj2e2
�
h dx � e2

gðr2Þ

h

Z
Bðr2,r4Þ

jPuj2 dx,Z
Bðr1,r2Þ

jPð
uÞj2e2
�
h dx � e2

gðr1Þ

h

Z
Bðr1,r2Þ

jPuj2 dxþ Ke2
gðr1 Þ

h

Z
Bðr1,r2Þ

ðjuj2 þ jruj2Þ dx,Z
Bðr4,r5Þ

jPð
uÞj2e2
�
h dx � e2

gðr4Þ

h

Z
Bðr4,r5Þ

jPuj2 dxþ Ke2
gðr4 Þ

h

Z
Bðr4,r5Þ

ðjuj2 þ jruj2Þ dx:

Gathering the above inequalities, it follows thatZ
!

jPvj2e2
�
h dx � K1e

2
gðr1 Þ

h

Z
Bðq,r6Þ

jPuj2 dxþ

Z
Bðq,r2Þ

ðjuj2 þ jruj2Þ dx

� �

þ K2e
2
gðr4Þ

h

Z
Bðq,r6Þ

ðjuj2 þ jruj2Þ dx,

where K1 and K2 are two constants which are independent of ak.
Finally, the inequality (5) implies

e2
gðr3 Þ

h kuk2H1ðBðr2,r3ÞÞ
� K1 e

2
gðr1 Þ

h kPuk2L2ðBðq,r6ÞÞ
þ kuk2H1ðBðq,r2ÞÞ

� 	
þ K2 e

2
gðr4 Þ

h kuk2H1ðBðq,r6ÞÞ
:

Using

kuk2H1ðBðq,r3ÞÞ
¼ kuk2H1ðBðq,r2ÞÞ

þ kuk2H1ðBðr2,r3ÞÞ
,

we obtain

e2
gðr3 Þ

h kuk2H1ðBðq,r3ÞÞ
� K1 e

2
gðr1 Þ

h kPuk2L2ðBðq,r6ÞÞ
þ kuk2H1ðBðq,r2ÞÞ

� 	
þ K2 e

2
gðr4Þ

h kuk2H1ðBðq,r6ÞÞ
:

Denoting k1¼ g(r1)� g(r3)4 0 and k2¼ g(r3)� g(r4)4 0, we obtain

kukH1ðBðq,r3ÞÞ � K1 e
k1
h kPukL2ðBðq,r6ÞÞ þ kukH1ðBðq,r2ÞÞ

� �
þ K2 e

�
k2
h kukH1ðBðq,r6ÞÞÞ:

Let s4 0 and c4 0 such that

c

"
¼ K1e

k1
h , "s ¼ K2e

�
k2
h :

A simple calculation proves that

s ¼
k2
k1
¼

gðr3Þ � gðr4Þ

gðr1Þ � gðr3Þ
, c ¼ K1ðK2Þ

ðk1=k2Þ,

and we obtain for all u2H1(�,D), for all "2 ]0, "0[ with

"0 ¼ K
ðk1=k2Þ
2 e

�
k1
h0 ,

the inequality

kukH1ðBðq,r3ÞÞ �
c

"
kPukL2ðBðq,r6ÞÞ þ kukH1ðBðq,r2ÞÞ

� �
þ "skukH1ðBðq,r6ÞÞ:
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The constant c does not depend on ak, "0 depends on ak only through jkj. It remains

to apply Lemma 3 in [3], since kukH1(B(q,r3))
�kukH1(B(q,r6))

. g

LEMMA 2.3 Let us denote Pk the operator �D. �k., with k2R. Let ~q2�, and let

05 ~r0 5 ~r1 5 ~r2 5 ~r3 5 ~r4 5 ~r5 5 ~r6 such that Bð ~q, ~r6Þ � �. Consider now q2� and

for 	2 ]0, 1[, ri ¼ 	 ~ri (i¼ 1, 2, . . . , 6), with B(q, r6)��.
We assume that the three spheres inequality (4) associated with the operator P	2k

and the sequence of balls Bð ~q, ~riÞ is satisfied with the constants ~C and s. Then the three

spheres inequality (4) associated with the operator Pk and the sequence of balls B(q, ri)

is satisfied with the constants C ¼ ~C=	 and s.

Proof The proof relies on the change of variables x� q ¼ 	ð ~x� ~qÞ. We define the

function ũ as ~uð ~xÞ ¼ uðxÞ ¼ ~uð ~qþ ðx� qÞ=	Þ.
We obtainZ

Bðq,riÞ

juðxÞj2 þ jruðxÞj2 dx ¼ 	N

Z
Bð ~q, ~riÞ

j ~uð ~xÞj2 þ
1

	2
jr ~uð ~xÞj2 d ~x

� �
,

whence

	
N
2k ~ukH1ðBð ~q, ~riÞÞ � kukH1ðBðq,riÞÞ � 	

N
2�1k ~ukH1ðBð ~q, ~riÞÞ:

Similarly, we obtain

kPkukL2ðBðq,riÞÞ ¼ 	
N
2�2kP	2k ~ukL2ðBð ~q, ~riÞÞ:

By using the three spheres inequality (4) associated with the balls Bð ~q, ~riÞ for operator

P	2k, we obtain

kukH1ðBðq,r3ÞÞ � 	
N
2�1k ~ukH1ðBð ~q, ~r3ÞÞ

� ~C	
N
2�1 kP	2k ~ukL2ðBð ~q, ~r6ÞÞ þ k ~ukH1ðBð ~q, ~r2ÞÞ

� � s
sþ1k ~uk

1
sþ1

H1ðBð ~q, ~r6ÞÞ

� ~C	
N
2�1

1

	
N
2�2
kPkukL2ðBðq,r6ÞÞ þ

1

	
N
2

kukH1ðBðq,r2ÞÞ

� � s
sþ1 1

	
N
2

kukH1ðBðq,r6ÞÞ

� � 1
sþ1

�
~C

	
kPkukL2ðBðq,r6ÞÞ þ kukH1ðBðq,r2ÞÞ

� � s
sþ1kuk

1
sþ1

H1ðBðq,r6ÞÞ
,

which completes the proof. g

3. The two main theorems

Our main theorems are based on the following proposition, which is similar to

Proposition 4 in [3]. It concerns the propagation of data from the interior of the

domain up to the boundary of such domain. However, it should be noted that in

Proposition 4 of [3], we estimated the H1 norm of the function in a neighbourhood of

a point x02 @� with the help of the H1 norm of the function in an open domain

!1 ! �. Here, we estimate the value of the function and its first derivatives at x0 with

the help of the H1 norm of the function in !1. As a result, the regularity assumptions

concerning the function u are not the same as in [3].
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PROPOSITION 3.1 There exists an open domain !1 ! � such that for all �2 ]0, 1], for
all �5��0(�) and �

05 �0(�), with

�0ð�Þ ¼
1

2
sup
x40

sin �ð1� e�xÞffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

� sin �
, ð6Þ

there exists c4 0 such that for sufficiently small ", for all u2C1,�ð�Þ with Du2L2(�),

kukC1ð@�Þ � ec="ðkPukL2ð�Þ þ kukH1ð!1Þ
Þ þ "�kukC1,�ð ��Þ,

kukC0ð@�Þ � ec="ðkPukL2ð�Þ þ kukH1ð!1Þ
Þ þ "�

0

kukC1,�ð ��Þ:

The second inequality holds also in the case �¼ 0.

In order to obtain Proposition 3.1, we need the two following lemmas. The first

one is a minor generalization of the lemma proved in [8] in the particular case 	¼ 1,

while the second one is the counterpart of Lemma 3 in [3].

LEMMA 3.2 Let �n4 0 satisfy for n2N,

�nþ1 �
1

	n
ð�n þ AÞ�B1��,

with A4 0, B4 0, �2 ]0, 1[, 	2 ]0, 1[ and �n�B. Then one has for n2N
*

�n �
2

1
1��

	
n�1
1��

ð�0 þ AÞ�
n

B1��n :

Proof If B5�0þA, the proof is complete. If �0þA�B, in particular A�B, we

have

�nþ1
B
�

1

	n

�n þ A

B

� ��

and

A

B
�

1

	n

A

B

� ��
�

1

	n

�n þ A

B

� ��
:

From the two above inequalities, it follows that

�nþ1 þ A

2
1

1��B
�

1

	n

�n þ A

2
1

1��B

� ��
,

that is

xnþ1 �
x�n
	n

, xn :¼
�n þ A

2
1

1��B
:

By iterating the above inequality, we obtain

xn �
1

	

� �n�1þðn�2Þ�þðn�3Þ�2þ���þ�n�2

x�
n

0

�
1

	

� �ðn�1Þð1þ�þ�2þ���þ�n�2Þ
x�

n

0 �
1

	

� �n�1
1��

x�
n

0 ,
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whence

�n �
2

1
1��

	
n�1
1��

ð�0 þ AÞ�
n

B1��n ,

which completes the proof. g

LEMMA 3.3 Let C, �, A and B denote four non-negative reals and �2 ]0, 1[ such that

� � CA�B1��:

Then 8"4 0,

� �
c

"
Aþ "s B,

with

s ¼
�

1� �
, c ¼

C

s1=ðsþ1Þ þ s�s=ðsþ1Þ

� �sþ1
s

:

Proof For c, s4 0 as defined in the statement of the lemma, the minimum of the

function f defined for "4 0 by

f ð"Þ ¼
c

"
Aþ "s B

is CA�B1��, which completes the proof. g

Proof of proposition 3.1 The proof is divided into three parts. In the first step of the

proof we follow the technique of [1], which consists in defining a sequence of balls the

radii of which is decreasing and the centre of which is approaching the boundary

of the domain. Since � satisfies the cone property (see our definition in the

introduction), there exist R04 0, � 2 ]0,�/2[ with R0 and � independent of x02 @�,

and � 2R
N with j�j ¼ 1 such that the finite cone

C ¼ fx, jx� x0j5R0, ðx� x0Þ:�4 jx� x0j cos �g

satisfies C��. We also denote

C0 ¼ fx, jx� x0j5R0, ðx� x0Þ:�4 jx� x0j cos �
0g,

with

�0 ¼ arcsinðt sin �Þ, ð7Þ

where the coefficient t2 ]0, 1[ will be specified further. It should be noted that

definition (7) leads to �0 2 ]0,�/2[. We now denote q0¼ x0þ (R0/2) �, d0¼ jq0� x0j

and 
0¼ d0 sin �0. We hence have B(q0, 
0)2C
0. Let us define the sequence of balls

B(qn, 
n)�C0 with dn¼ jqn� x0j and 
n¼ dn sin �
0 by following induction:

qnþ1 ¼ qn � �n�


nþ1 ¼ 	
n

dnþ1 ¼ 	dn,

8><
>: ð8Þ

Applicable Analysis 9
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where �n and 	 will be defined further. From the above equations, we deduce that

�n ¼ ð1� 	Þdn: ð9Þ

The objective is to use a three spheres inequality such as (4) for each n, the centre

of these three spheres being q¼ qn. We hence define, for n2N, 05 r0n5 r1n5
r2n¼ 
n5 r3n5 r4n5 r5n5 r6n and yin¼ rin/r0n4 1 for i¼ 1, . . . , 6. We assume that

the yin do not depend on n, that is yin :¼ yi. We specify t¼ r2n/r6n¼ y2/y6 in (7), so that

we have B(qn, r6n)2C�� for all n (Figure 1).
On the other hand, if �n is chosen such that


nþ1 þ �n ¼ r3n, ð10Þ

we have B(qnþ1, 
nþ1)�B(qn, r3n) since for jx� qnþ1j5 
nþ1,

jx� qnj � jx� qnþ1j þ jqnþ1 � qnj5 
nþ1 þ �n ¼ r3n:

Equations (9) and (10) uniquely define 	 as

	 ¼
r6n � r3n sin �

r6n � r2n sin �
¼

y6 � y3 sin �

y6 � y2 sin �
2 	0, 1½:

By using the notation Pk¼�D. �k., we now apply Lemma 2.2 for operator P	2nk and

for the spheres of centre q0 and of radii ri0, with � such that � :¼ �r200 4 1. We thus

obtain for u2H1(�,D),

kukH1ðBðq0,r30ÞÞ � C kP	2nkukL2ðBðq0,r60ÞÞ þ kukH1ðBðq0,r20ÞÞ

� � s
sþ1kuk

1
sþ1

H1ðBðq0,r60ÞÞ
,

∂Ω

θ

θ

ξ
x0

r06

r03

r02

q0

qn

Figure 1. The sequence of three spheres inequalities.
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with C independent of 	 and n. With the help of Lemma 2.3, and since rin¼	
nri0 for

i¼ 1, . . . , 6, the three spheres inequality for the spheres of centre qn and of radii rin is

kukH1ðBðqn,r3nÞÞ �
C

	n
kPkukL2ðBðqn,r6nÞÞ þ kukH1ðBðqn,r2nÞÞ

� � s
sþ1kuk

1
sþ1

H1ðBðqn,r6nÞÞ
,

which implies that for all u2H1(�,D),

kukH1ðBðqnþ1,
nþ1ÞÞ �
C

	n
kPukL2ð�Þ þ kukH1ðBðqn,
nÞÞ

� � s
sþ1kuk

1
sþ1

H1ð�Þ
:

It should be noted that in the above inequality, C and s are independent of n, in

particular

s ¼
e��y

2
3 � e��y

2
4

e��y
2
1 � e��y

2
3

:

Without loss of generality we assume that C� 1, so that by denoting C0 ¼Csþ1,

kukH1(B(qnþ1,
nþ1))
�C0kukH1(�), and we can apply Lemma 3.2 with �n¼kukH1(B(qn,
n))

,

A¼kPukL2(�), B¼C0kukH1(�), �¼ s/(sþ 1). We obtain

kukH1ðBðqn, 
nÞÞ �
2

1
1��

	
n�1
1��

kPukL2ð�Þ þ kukH1ðBðq0,
0ÞÞ

� ��n
C0kukH1ð�Þ

� �1��n
:

We apply now Lemma 3.3 and obtain 8"4 0,

kukH1ðBðqn, 
nÞÞ �
cn
"
kPukL2ð�Þ þ kukH1ðBðq0,
0ÞÞ

� �
þ "sn C0kukH1ð�Þ

with

sn ¼
�n

1� �n
, cn ¼

2
1

1��

	
n�1
1��

1

EðsnÞ

 !snþ1
sn

,

and

EðsÞ :¼ s1=ðsþ1Þ þ s�s=ðsþ1Þ:

We notice that for s4 0, E(s)4 1, whence

log
2

1
1��

	
n�1
1��

1

EðsnÞ

 !
5

1

1� �
log

2

	n�1

� �
:

As a result,

05 cn 5 e
1
sn

1

ð1��Þ2
log 2

	n�1

� 	
¼ e

c
sn
log 2

	n�1

� 	
,

for some constant c4 0. Here we have used the fact that snþ 15 1/(1� �). Since
sn4 �n, we finally obtain 8n2N

*, 8"4 0 and 8u2H1(�,D),

kukH1ðBðqn, 
nÞÞ �
e

c
�n
log
�

2

	n�1

�
"

kPukL2ð�Þ þ kukH1ðBðq0,
0ÞÞ

� �
þ C0"�

n

kukH1ð�Þ:
ð11Þ

Applicable Analysis 11

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
o
u
r
g
e
o
i
s
,
 
L
a
u
r
e
n
t
]
 
A
t
:
 
0
7
:
5
4
 
2
5
 
M
a
y
 
2
0
1
0



The second step of the proof consists of estimating the C1 norm of u on @� by using

the estimate (11) for sufficiently large n and the regularity of u, which is C1,�ð�Þ,

�2 ]0, 1]. We have B(qn, 
n)�B(x0, "
0) if and only if dnþ 
n� "

0, that is

	n(d0þ 
0)� "
0. Let n0 denote the smaller n which satisfies this inequality, that is

logððd0 þ 
0Þ="
0Þ

log 1=	
� n0 5

logððd0 þ 
0Þ="
0Þ

log 1=	
þ 1:

For all x2B(qn0, 
n0), and for v¼ u or v¼ @u/@xi, i¼ 1, . . . ,N, we have

jvðx0Þj
2 � 2jvðxÞj2 þ 2kuk2

C1,�ð�Þ
"02�: ð12Þ

After integration over B(qn0, 
n0), we obtain by denoting

Sx0ðuÞ ¼ max juðx0Þj,
@u

@x1
ðx0Þ










, . . . ,

@u

@xN
ðx0Þ












� �
,

VN

N
n0
S2
x0
ðuÞ � 2kuk2H1ðBðqn0 , 
n0 ÞÞ

þ 2VN

N
n0
"0
2�
kuk2

C1,�ð�Þ
,

where VN is the volume of the unit sphere in R
N. Finally,

Sx0ðuÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

VN
Nn0

s
kukH1ðBðqn0 , 
n0 ÞÞ

þ
ffiffiffi
2
p
"0�kukC1,�ð�Þ: ð13Þ

From (11) with n¼ n0 and (13), we obtain there exists c, C4 0 such that for all

", "04 0,

Sx0 ðuÞ � C
1


N=2n0

e
c
�n0

log
�

2

	n0�1

�
"

kPukL2ð�Þ þ kukH1ðBðq0,
0ÞÞ

� �
þ C

1


N=2n0

"�
n0
kukH1ð�Þ þ C"0�kukC1,�ð�Þ:

We have kukH1ð�Þ � c kukC1,�ð�Þ for some c4 0. Furthermore, 	n0�1(d0þ 
0)4 "0 and

n0¼	

n0
0 lead to


n0 4	

0

d0 þ 
0
"0:

We obtain there exists c, C4 0 such that for all ", "04 0,

Sx0ðuÞ � C
1

"0N=2
e

c
�n0

log
�

2

	n0�1

�
"

kPukL2ð�Þ þ kukH1ðBðq0,
0ÞÞ

� �
þ C

"�
n0

"0N=2
þ "0�

� �
kukC1,�ð�Þ:

Now we introduce the relationship "�
n0 ="0

N
2 ¼ "0�, and since �n05 1 we obtain a new

constant C4 0 such that

Sx0ðuÞ � C
e

c
�n0

log
�

2

	n0�1

�
"0
�þN
�n0

kPukL2ð�Þ þ kukH1ðBðq0,
0ÞÞ

� �
þ C"0�kukC1,�ð�Þ: ð14Þ
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Since 1/�n0¼ en0log(1/�), we have

1

�n0
5 elogð1=�Þ

logððd0þ
0 Þ="
0 Þ

logð1=	Þ þ1
� �

¼
1

�

d0 þ 
0
"0

� ��0
,

with �0¼ log(1/�)/log(1/	).
Furthermore, since 1/	n0�15 (d0þ 
0)/"

0, we have

log
2

	n0�1

� �
5 log

2ðd0 þ 
0Þ

"0

� �
:

Then,

e
c
�n0

log 2

	n0�1

� 	
"0ð�þNÞ=�

n0
¼ e

1
�n0

c log 2

	n0�1

� 	
þð�þNÞ log 1

"0ð Þ

� 	
� e

1
�

d0þ
0
"0

� ��0
c log

2ðd0þ
0Þ

"0

� �
þð�þNÞ log 1

"0ð Þ
� �

:

As a result, for some new c04 0, for sufficiently small "0 we have

e
c
�n0

log 2

	n0�1

� 	
"0ð�þNÞ=�

n0
� e

c0

"0�0
logð1

"0
Þ:

For all �4 �0, for some new c04 0, for sufficiently small "0 we have

e
c
�n0

log
�

2

	n0�1

�
"0ð�þNÞ=�

n0
� e

c0

"0� :

Coming back to (14), we obtain

Sx0ðuÞ � ec
0="0� kPukL2ð�Þ þ kukH1ðBðq0,
0ÞÞ

� �
þ C"0�kukC1,�ð�Þ:

By denoting "¼ "0� for any �4 �0, for small "4 0,

Sx0 ðuÞ � ec
0=" kPukL2ð�Þ þ kukH1ðBðq0,
0ÞÞ

� �
þ C0"�=�kukC1, �ð�Þ:

Finally, by denoting �0¼ 1/�0, for all �5��0 there exists c, "04 0 such that for all

"5 "0,

Sx0 ðuÞ � ec=" kPukL2ð�Þ þ kukH1ðBðq0,
0ÞÞ

� �
þ "�kukC1,�ð�Þ:

By following the history of the constants c and "0 throughout the proof, it is readily
seen that c and "0 do not depend on x02 @�. Furthermore, if we define !1 ! � as the

union of the balls B(q0, 
0) when x0 describes @�, we obtain that for all �5��0, there
exists c, "04 0 such that for all "5 "0, for all u2C

1,�ð�Þ with Du2L2(�),

kukC1ð@�Þ � ec=" kPukL2ð�Þ þ kukH1ð!1Þ

� �
þ "�kukC1, �ð�Þ, ð15Þ

which is the first inequality of the proposition.
The second inequality is obtained by using the embedding C1,�ð�Þ ! C1ð�Þ,

for all �2 [0, 1]. For x2B(qn0, 
n0), we replace (12) by

juðx0Þj
2 � 2juðxÞj2 þ 2kuk2

C1ð�Þ
"0
2
,

and we use the same technique as above.
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The third step of the proof consists in maximizing

�0 ¼
logð1=	Þ

logð1=�Þ
,

with

1

	
¼

y6 � y2 sin �

y6 � y3 sin �
,

1

�
¼

e�ð y
2
4
�y2

1
Þ � 1

e�ð y
2
4
�y2

3
Þ � 1

:

The inequality (15) holds for all �5 ~�0, with

~�0 ¼ sup
15�, 15y15y25y35y45y6

log
y6 � y2 sin �

y6 � y3 sin �

� ��
log

e�ð y
2
4
�y2

1
Þ � 1

e�ð y
2
4
�y2

3
Þ � 1

 !
: ð16Þ

Now, let us specify � and the yi as follows, for k2 ]0, 1[ and �4 0,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2
p

,

y :¼ ð1þ k2Þ1=4,

y1 ¼ y,

y2 ¼ yð1þ k2�Þ,

y3 ¼ yð1þ k�þ k2�Þ,

y4 ¼ yð1þ �þ k2�Þ,

y6 ¼ yð1þ �þ 2k2�Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð17Þ

A first order expansion in k around 0 for fixed � leads to

log
y6 � y2 sin �

y6 � y3 sin �

� �
¼

� sin �

1þ �� sin �
kþ o�ðkÞ,

log
e�ð y

2
4
�y2

1
Þ � 1

e�ð y
2
4
�y2

3
Þ � 1

 !
¼ 2�

e2�þ�
2

e2�þ�
2
� 1

kþ o�ðkÞ

By passing to the limit k! 0 and by taking the sup in �, we obtain the following

particular value �0 � ~�0:

�0 ¼ sup
�40

1

2

sin �

1þ �� sin �
1� e�ð2�þ�

2Þ
� 	

,

and the optimization problem (6) follows by setting x¼ 2�þ �24 0. g

Remark 1 We can verify that in fact the values ~�0 and �0, defined by (16) and (6)

respectively, actually satisfy ~�0 ¼ �0. First, we eliminate � in (16) simply by using

the change of variables zi ¼
ffiffiffi
�
p

yi with i¼ 1, . . . , 6. We obtain

~�0 ¼ sup
15z15z25z35z45z6

log
z6 � z2 sin �

z6 � z3 sin �

� ��
log

ez
2
4
�z2

1 � 1

ez
2
4
�z2

3 � 1

 !
: ð18Þ

We remark that the function to maximize in (18) is an increasing function of z1 and

a decreasing function of z6, that is why we can consider only the asymptotic situation

14 L. Bourgeois and J. Dardé
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z1! z2 and z6! z4. In order to simplify the analysis with the remaining variables
z2, z3, z4, we denote

z3 � z2 ¼ ~k ~�z2, z4 � z2 ¼ ~�z2, z2 ¼ ~z,

with ~�4 0 and ~k2 	0, 1½. We obtain

~�0 ¼ sup
15 ~z, 05 ~�, 05 ~k5 1

log
1þ ~�� sin �

1þ ~�� sin � � ~k ~� sin �

 !�
log

eð2
~�þ ~�2Þ ~z2 � 1

eð2ð1� ~kÞ ~�þð1� ~k2Þ ~�2Þ ~z2 � 1

 !
:

Furthermore, it is easy to prove that since 2 ~�þ ~�2 4 2ð1� ~kÞ ~�þ ð1� ~k2Þ ~�2, for fixed
ð ~k, ~�Þ, the function to maximize is a non-increasing function of ~z4 1, so that the
maximum of the function is obtained for ~z! 1, and

~�0 ¼ sup
05 ~�, 05 ~k5 1

log
1þ ~�� sin �

1þ ~�� sin � � ~k ~� sin �

 !�
log

e2
~�þ ~�2 � 1

e2ð1� ~kÞ ~�þð1� ~k2Þ ~�2 � 1

 !
:

We notice that for fixed ~�, the maximum of the function of two variables is obtained
for ~k! 0, and a first order expansion in ~k leads us to the same expression as (6),
that is ~�0 ¼ �0.

In order to obtain our main theorem, we recall the two following results, the first
one is obtained in [4] while the second one is obtained in [3].

PROPOSITION 3.4 Let !0, !1 be two open domains such that !0, !1 ! �. There exist
s, c, "04 0 such that 8"2 ]0, "0[, 8u2H

1(�,D),

kukH1ð!1Þ
�

c

"
kPukL2ð�Þ þ kukH1ð!0Þ

� �
þ "s kukH1ð�Þ:

PROPOSITION 3.5 Assume �0� @� is of class C1,1 and let x02�0 and �4 0 such that
@�\B(x0, �)��0. There exists a neighbourhood !0 of x0, there exist s, c, "04 0
such that 8"2 ]0, "0[, for all u2H

2(�),

kukH1ð�\!0Þ
�

c

"
kPukL2ð�Þ þ kukH1ð�0Þ

þ k@nukL2ð�0Þ

� �
þ "s kukH1ð�Þ:

The inequality holds also for all u2C1ð�Þ with Du2L2(�).

We are now in a position to state the main theorem, which is a consequence of
Propositions 3.1, 3.4 and 3.5.

THEOREM 3.6 Let ��R
N be a bounded and connected open domain with Lipschitz

boundary. If the cone property is satisfied with angle � 2 ]0,�/2[, let �0(�) denote the
solution of the following maximization problem:

�0ð�Þ ¼
1

2
sup
x40

sin �ð1� e�xÞffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

� sin �
:

Let �0 be a non-empty C1,1 open part of @� and let us introduce the operator
P¼�D.� k., where k is not a Dirichlet eigenvalue of the operator �D in �.

For �2 [0, 1], for all �2 ]0, (1þ �)�0(�)/2[, there exist C, �0 such that for all
�2 ]0, �0[, for all functions u2C

1,�ð�Þ such that Du2L2(�) and which satisfy

kukC1,�ð�Þ �M, kPukL2ð�Þ þ kukH1ð�0Þ
þ k@nukL2ð�0Þ

� �, ð19Þ
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where M4 0 is a constant, then

kukH1ð�Þ � C
M

ðlogðM=�ÞÞ�
: ð20Þ

If we do not assume that �0 is of class C
1,1, the estimate (20) holds under assumption

(19) provided we restrict to the functions u which satisfy uj�0
¼ 0 and @nuj�0

¼ 0.

Proof Assume first that �2 ]0, 1]. By using Proposition 3.1, there exists a domain

!1 ! � such that for any �5��0(�) and any �05 �0(�), there exist c, "04 0 such that

for all "5 "0, for all u2C
1,�ð�Þ with Du2L2(�),

kukC1ð@�Þ � ec="ðkPukL2ð�Þ þ kukH1ð!1Þ
Þ þ "�kukC1, �ð�Þ,

and

kukC0ð@�Þ � ec="ðkPukL2ð�Þ þ kukH1ð!1Þ
Þ þ "�

0

kukC1,�ð�Þ:

If u¼ 0 and @nu¼ 0 on �0 (case 2), since @�\B(x0, �)��0, the extension ũ of u by 0

in B(x0, �) belongs to H1(�[B(x0, �), D). By applying Proposition 3.4 to function ũ

in domain �[B(x0, �) and by choosing !0!Bðx0, �Þ \�
c
, we obtain that for

sufficiently small ", for all u2C1,�ð�Þ such that Du2L2(�),

kukC1ð@�Þ � ec="kPukL2ð�Þ þ "
�kukC1,�ð�Þ,

kukC0ð@�Þ � ec="kPukL2ð�Þ þ "
�0 kukC1, �ð�Þ:

We conclude that if moreover u satisfies assumption (19) then

kukC1ð@�Þ � ec="�þ "�M, kukC0ð@�Þ � ec="�þ "�
0

M:

By using the same " optimization procedure as in Corollary 1 of [3], we obtain that

for all �5��0(�) and �
05 �0(�), there exists C4 0 such that for sufficiently small �,

kukC1ð@�Þ � C
M

ðlogðM=�ÞÞ�
, kukC0ð@�Þ � C

M

ðlogðM=�ÞÞ�
0 : ð21Þ

Since k is not a Dirichlet eigenvalue of the operator �D in �, there exists a constant

C04 0 such that for all u2H1(�,D),

kukH1ð�Þ � C0ðkPukL2ð�Þ þ kukH1=2ð@�ÞÞ: ð22Þ

With the help of an interpolation inequality, we obtain for some constant c4 0,

kukH1=2ð@�Þ � ckuk1=2
L2ð@�Þ
kuk1=2

H1ð@�Þ
, ð23Þ

hence for some new constant c,

kukH1=2ð@�Þ � ckuk1=2
C0ð@�Þ
kuk1=2

C1ð@�Þ
, ð24Þ

and it follows from (21) that

kukH1=2ð@�Þ � cC
M

ðlogðM=�ÞÞð�þ�
0Þ=2
:

The result follows from (22).
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If we do not assume that u¼ 0 and @nu¼ 0 on �0, but if moreover �0 is of class
C1,1 (case 1), then we can apply Proposition 3.5 in addition to Propositions 3.1 and
3.4, hence for all �5��0(�) and �05 �0(�), there exist c, "04 0 such that for all
"5 "0, for all u2C

1,�ð�Þ such that Du2L2(�),

kukC1ð@�Þ � ec="ðkPukL2ð�Þ þ kukH1ð�0Þ
þ k@nukL2ð�0Þ

Þ þ "�kukC1, �ð�Þ,

kukC0ð@�Þ � ec="ðkPukL2ð�Þ þ kukH1ð�0Þ
þ k@nukL2ð�0Þ

Þ þ "�
0

kukC1,�ð�Þ:

We complete the proof as in case 2.
As concerns the case �¼ 0, the result follows from (24), from the second

inequality of (21), which remains true, and from the fact that kukC1(@�)�M. g

Remark 2 It is readily shown by analysing the variations of the function k� defined
on [0,þ1[ by

k�ðxÞ ¼
1

2

sin �ð1� e�xÞffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

� sin �
, ð25Þ

that the maximization problem (6) is well-posed. In particular, the argument x that
maximizes the function is unique. In Figure 2, the graph of function k� is plotted for
increasing values of �, and the values of function �0 are plotted for all values of
� 2 [0,�/2]. The function �0 is increasing on the segment [0,�/2], with �0(0)¼ 0 and
�0(�/2)¼ 1.

Remark 3 The fact that �0(0)¼ 0 indicates that when �! 0, which means that the
domain � has a cusp, the logarithmic stability does not hold any more. This is
consistent with the result obtained in [1] when the domain is not Lipschitz, then
a logarithmic–logarithmic estimate was established.

Remark 4 The fact that �0(�/2)¼ 1 implies that for domains of classC1, Theorem 3.6
holds for all �5 (1þ �)/2. Hence, in the case of functions u inC1,1ð�Þ � H2ð�Þ (�¼ 1),
Theorem 3.6 extends the result of Corollary 1 in [3], which was satisfied for domains of
classC1,1, to domains of classC1, provided either �0 is of classC

1,1 or we restrict to the
functions u which satisfy u¼ 0 and @nu¼ 0 on �0. It is also interesting to note that

0 2 4 6 8 10
0

0.1
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 π/16 π/8 3π/16 π/4 5π/16 3π/8 7π/16 π/2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2. Left: graph of function k� for increasing values of �: �/16, �/10, �/6, �/4, �/3, 3�/8,
7�/16, �/2. Right: function �0(�).
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in 2D, if � has only reentrant corners, then the cone property is satisfied for any

� 2 ]0,�/2[, and Theorem 3.6 holds for all �5 1. Hence, the corners of angle smaller

than � deteriorate the exponent of the logarithmic stability, while those of angle larger

than � do not. A similar remark can be done in 3D.

Remark 5 The obtained function (25) is greatly dependent on the choice of the

function  (x)¼�jx� qj2 which was used in the exponential weight �¼ e� of our

Carleman estimate (3). Besides, the values of �0(�) induced by this choice and given

by (6) are not necessarily optimal, except for �¼�/2, for which we have proved in [3]

that �0(�/2)¼ 1 is optimal. By testing other types of function  , in particular

 (x)¼�jx� qj� with other values of �4 0 and  (x)¼�log jx� qj, we have found

other functions �0, but taking lower values.

Remark 6 From the proof of Theorem 3.6, we obtain the following corollary

concerning the data completion problem. This problem consists, for a function u that

solves Pu¼ 0 in � in the sense of distributions, to compute with the help of the values

of u and @nu on �0, the values of u and @nu on the complementary part �1.

If u2C1,�ð�Þ, �2 ]0, 1], solves Pu¼ 0 in � and satisfies kukC1,�ð�Þ �M and

kukC1ð�0Þ
� �, then for all �5��0(�), there exists C, �04 0 such that for �5 �0,

kukC1ð�1Þ
� CM=ðlogðM=�ÞÞ�.

In a view to derive a convergence rate of the method of quasi-reversibility,

we now study the case of functions that are H2(�) for N¼ 2 and N¼ 3. We obtain

the following theorem.

THEOREM 3.7 We define the sets �, �0 and the operator P exactly as in the statement

of Theorem 3.6.
In the case N¼ 2 (respectively N¼ 3), for all �2 ]0, �0(�)/2[ (respectively

�2 ]0, �0(�)/4[ ), there exist C, �0 such that for all �2 ]0, �0[, for all functions

u2H2(�) which satisfy

kukH2ð�Þ �M, kPukL2ð�Þ þ kukH1ð�0Þ
þ k@nukL2ð�0Þ

� �, ð26Þ

where M4 0 is a constant, then

kukH1ð�Þ � C
M

ðlogðM=�ÞÞ�
: ð27Þ

If we do not assume that �0 is of class C
1,1, the estimate (27) holds under assumption

(26) provided we restrict to the functions u which satisfy uj�0
¼ 0 and @nuj�0

¼ 0.

Proof By classical embeddings for Sobolev spaces (see e.g. [9], p. 108]), we have that

for N¼ 2, H2ð�Þ ! C0,�ð�Þ, for all �2 [0, 1[, and for N¼ 3, H2ð�Þ ! C0,1=2ð�Þ.
Then the proof is very similar to the proof of Theorem 3.6. For all �5 �0(�) in the

case N¼ 2 (respectively for all �5 �0(�)/2 in the case N¼ 3), there exists c4 0 such

that for sufficiently small ", for all u2H2(�),

kukC0ð@�Þ � ec="ðkPukL2ð�Þ þ kukH1ð!1Þ
Þ þ "�kukH2ð�Þ,

and then by using propositions 3.4 and 3.5,

kukC0ð@�Þ � ec="ðkPukL2ð�Þ þ kukH1ð�0Þ
þ k@nukL2ð�0Þ

Þ þ "�kukH2ð�Þ:

18 L. Bourgeois and J. Dardé
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Then assumption (26) implies

kukC0ð@�Þ � ec="�þ "�M:

By using the same " optimization procedure as in Corollary 1 of [3], we obtain that
there exists C4 0 such that for sufficiently small �,

kukC0ð@�Þ � C
M

ðlogðM=�ÞÞ�
:

Combining (22) and (23), we obtain

kukH1ð�Þ � C kPukL2ð�Þ þ kuk
1=2
C0ð@�Þ
kuk1=2

H1ð@�Þ

� 	
:

By using a classical trace inequality, we obtain

kukH1ð�Þ � C kPukL2ð�Þ þ kuk
1=2
C0ð@�Þ
kuk1=2

H2ð�Þ

� 	
,

which completes the proof. g

4. Application to the method of quasi-reversibility

In this section, we use the stability estimates obtained in previous section to derive a
convergence rate for the quasi-reversibility method, and therefore to complete the
results already obtained in [3,10]. The method of quasi-reversibility, first introduced
in [11], enables one to regularize the ill-posed elliptic Cauchy problems.

Specifically, we consider a bounded and connected open domain ��R
N with

Lipschitz boundary and an open part �0. Now we assume that u2H2(�) solves the
ill-posed Cauchy problem with data ð g0, g1Þ 2H

1ð�0Þ � L2ð�0Þ:

Pu ¼ 0 in �
uj�0
¼ g0

@nuj�0
¼ g1:

8<
: ð28Þ

In order to solve the Cauchy problem with these uncorrupted data (g0, g1), for �4 0
we consider the formulation of quasi-reversibility, written in the following weak
form: find u�2H

2(�) such that 8v2H2(�), vj�0
¼ @nvj�0

¼ 0,

ðPu�,PvÞL2ð�Þ þ �ðu�, vÞH2ð�Þ ¼ 0

u�j�0
¼ g0

@nu�j�0
¼ g1:

8><
>: ð29Þ

Using Lax–Milgram theorem and introducing the solution u to the system (28), we
easily prove that formulation (29) is well-posed. On the other hand, it follows from
(28) and (29) that there exist constants C1, C24 0 such that

ku� � ukH2ð�Þ � C1, kPðu� � uÞkL2ð�Þ � C2

ffiffiffi
�
p

: ð30Þ

Using (30) and Theorem 3.7 in case 2 for the function u�� u2H2(�), we obtain the
following convergence rate: there exists C4 0 for all �2 ]0, �0(�)/2[ (respectively
�2 ]0, �0(�)/4[ ) for N¼ 2 (respectively for N¼ 3), such that for sufficiently small
�4 0,

ku� � ukH1ð�Þ � C
1

ðlogð1=�ÞÞ�
: ð31Þ
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Note that if additionally we assume that u�� u2H3(�) and

ku� � ukH3ð�Þ � C1, ð32Þ

with the help of the embeddings H3ð�Þ ! C1,�ð ��Þ for all �2 [0, 1[ and H3ð�Þ !

C1,1=2ð�Þ, the estimate (31) holds for all �2 ]0, �0(�)[ (respectively �2 ]0, 3�0(�)/4[) for
N¼ 2 (respectively for N¼ 3).

In order to test the optimality of (31), we introduce a discretized weak

formulation of quasi-reversibility, which is associated to the continuous weak

formulation (29). In this view, we consider the particular case N¼ 2, P¼�D, and �

is a polygonal domain. We use the so-called Fraeijs de Veubeke’s finite element

(F.V.1), introduced in [12] and analysed in [13]. This non-conforming finite element,

initially designed to solve plate bending problems, can be also used to solve the

quasi-reversibility formulation (29). In this article, we briefly describe such element,

but a comprehensive analysis of the discretized formulation is postponed in [14].
We consider a regular triangulation T h of � (see [15] for definition) such that the

diameter of each triangle K2T h is bounded by h. The set �0 consists of the union of

the edges of some triangles K2T h, and the complementary part of the boundary @�
is denoted �1. We denote Wh, the set of functions wh2L

2(�) such that for all K2T h,

whjK belongs to the space of shape functions PK in K (see [13] for definition of PK),

and such that the degrees of freedom coincide, that is: the values of the function at

the vertices, the values at the mid-points of the edges of the element, and the mean

values of the normal derivative along each edge.
Then, we define Vh,0 as the subset of functions of Wh for which the degrees of

freedom on the edges contained in �0 vanish, and Vh as the subset of functions ofWh

for which the degrees of freedom on the edges contained in �0 coincide with the

corresponding values obtained with data g0 and g1.
For �4 0, we consider the discretized formulation of quasi-reversibility, written

in the following weak form: find uh,�2Vh, such that for all wh2Vh,0,X
K2T h

ðDuh,�,DwhÞL2ðKÞ þ �ðuh,�,whÞH2ðKÞ

n o
¼ 0: ð33Þ

To analyse convergence when h tends to 0, we introduce the norms k�k2,h and k�k1,h,

which are defined, for wh2Wh, by

kwhk
2
2,h ¼

X
K2T h

kwhk
2
H2ðKÞ, kwhk

2
1,h ¼

X
K2T h

kwhk
2
H1ðKÞ:

By adapting to our case the arguments used in [16] with Morley’s finite element for

the plate bending problem, we prove that provided u� is smooth enough, then for

fixed �, kuh,���h u�k2,h! 0 like h when h! 0, where �h u� is the interpolate of u�
in Wh. By using the estimate (31), we conclude that for small fixed h, we have the

approximate convergence rate in �:

kuh,� � �huk19hC
1

ðlogð1=�ÞÞ�
: ð34Þ

This is the reason why we hope to capture the logarithmic exponent � by using a

refined mesh.
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In our numerical experiments, we solve the problem (33) with data g0¼ uj�0
and

g1¼ @n uj�0
for different harmonic functions u defined by um¼Re(z

m), with z¼ xþ iy

and m¼ 1, 2, . . . . For increasing values of m, the corresponding function um is more

and more oscillating, which is likely to deteriorate the convergence rate in � for fixed

h. We stop increasing m as soon as kuh,���huk1,h becomes bigger than 0.1 k�huk1,h,
that is when h is not sufficiently small to enable the regularization process in �.
In order to test different angles �, � is either a triangle of smaller angle 2�¼�/8,
2�¼�/5, 2�¼�/3, or a pentagon of smaller angle 2�¼�/2 (Figure 3). The set �0

covers 60% of the total boundary @� in all cases. The size of the mesh h is fixed to

1/150, which has to be compared to the edge of length 1 as shown in Figure 3.

Figure 4 represents the function �h u for u¼Re(z3) in the case 2�¼�/3, as well as
the function uh,���hu, where uh,� is the solution of (33) for �¼ 10�2, �¼ 10�4 and

�¼ 10�6. In order to capture the dependence of kuh,���huk1,h on � given by (34),

we plot

logðkuh,� � �huk1,hÞ ¼ Fðlogðlogð1=�ÞÞÞ

for functions u¼ um which correspond to increasing values of m. The first important

result is that the graph of the function F we obtain is actually a line of negative slope,

which is an experimental confirmation of the logarithmic stability we have

established. Furthermore, we remark that this slope is decreasing with m, as

predicted above. Figure 5 clearly illustrates this fact, in the case 2�¼�/3, for

m¼ 2, 3, 5. The second and main important result is the way the slope depends on the

smaller angle 2� of the polygon. As can be seen in Figure 6, the slope of F is

increasing as a function of � for fixed m, as predicted by (6). More precisely, we

observe that for increasing values of m, the slope tends asymptotically to some value

which is approximately the value �0(�) given by (6), in particular for small values of �.
Hence, it turns out that our estimate (31) for any �5 �0(�) (with the additional

regularity assumption (32)), which is not proved to be optimal, seems not far away

from optimality.

1

x

y

(0,0)

Γ0

Γ1

2Θ Ω

1

(0,0)
x

y

Γ0

Ω

2Θ
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Figure 3. Domains � under consideration.
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Figure 4. Exact solution Re(z3) for angle 2�¼�/3, discrepancy between the retrieved and the
exact solution for �¼ 10�2, �¼ 10�4 and �¼ 10�6.
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Figure 5. Function F for 2�¼�/3 and m¼ 2, 3, 5.
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D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
o
u
r
g
e
o
i
s
,
 
L
a
u
r
e
n
t
]
 
A
t
:
 
0
7
:
5
4
 
2
5
 
M
a
y
 
2
0
1
0



References

[1] G. Alessandrini, E. Beretta, E. Rosset, and S. Vessella, Optimal stability for inverse elliptic

boundary value problems with unknown boundaries, Annali della Scuola Normale Superiore

di Pisa 29(4) (2000), pp. 755–806.
[2] J. Cheng, M. Choulli, and J. Lin, Stable determination of a boundary coefficient in an

elliptic equation, M3AS 18(1) (2008), pp. 107–123.
[3] L. Bourgeois, Conditional stability for ill-posed elliptic Cauchy problems: The case of C1,1

domains (part I), Rapport INRIA 6585, 2008.
[4] K.-D. Phung, Remarques sur l’observabilité pour l’équation de laplace, ESAIM: Control,
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