Université Paul Sabatier

L3-ESR

Équations différentielles ordinaires

TD5 – Équations différentielles non linéaires

$(\star\star)$ **Exercice 0** – Fonction lipschitzienne

On considère la fonction

$$F: x \in \mathbb{R}^d \mapsto \left\{ \begin{array}{l} \|x\|_{\mathbb{R}^d} \text{ si } \|x\|_{\mathbb{R}^d} \le 1, \\ \|x\|_{\mathbb{R}^d}^2 \text{ sinon.} \end{array} \right.$$

Montrez que F n'est ni globalement lipschitzienne, ni de classe C^1 sur \mathbb{R}^d , mais qu'elle est localement lipschitzienne sur \mathbb{R}^d .

Résolutions explicites

(*) Exercice 1 – Au carré

Déterminez l'ensemble des solutions maximales des équations différentielles scalaire $y' = y^2$ et y' = y |y|.

(*) Exercice 2 – Équation différentielle à variables séparées

Montrez que le problème

$$(t^2 + 1) y' = (t + 1) y^2, \quad y(0) = 1,$$

admet une unique solution maximale (J, y). Déterminez y, et montrez que J est borné.

(*) Exercice 3 – Puissance α

Soit $\alpha > 0$, $\alpha \neq 1$. On définit

$$f_{\alpha}: y \in]0, \infty[\mapsto y^{\alpha} = \exp(\alpha \ln(y)) \in \mathbb{R}.$$

1) Montrez que le problème de Cauchy

$$y' = f_{\alpha}(y), \quad y(1) = y_1 > 0,$$

admet une unique solution maximale (J, y).

- 2) Déterminez J et y.
- 3) Déterminez les limites de y en $\inf(J)$ et $\sup(J)$.
- $(\star \star \star)$ Exercice 4 Puissance α , le retour

Pour α dans]0,1[, on pose

$$F_{\alpha}: y \in \mathbb{R} \mapsto \begin{cases} 0 \text{ si } y \leq 0, \\ y^{\alpha} \text{ sinon } . \end{cases}$$

Déterminez l'ensemble des solutions du problème de Cauchy $y' = F_{\alpha}(y), y(0) = 0.$

(*) Exercice 5 – Équation de Bernoulli

Soient $\alpha \in \mathbb{R} \setminus \{0,1\}$, et $a,b:I \mapsto \mathbb{R}$ deux fonctions continues. On considère le problème de Cauchy

$$y' = f(t, y), y(t_0) = y_0, t_0 \in I, y_0 > 0.$$

où

$$f:(t,y)\in I\times]0,\infty[\mapsto a(t)\,y+b(t)y^{\alpha}\in\mathbb{R}.$$

- 1) Montrez que ce problème de Cauchy admet une unique solution maximale (J, y).
- 2) Justifiez que la fonction $w: t \in J \mapsto y^{1-\alpha}$ est bien définie, et de classe C^1 . Quelle équation différentielle est satisfaite par w sur J?
- 3) Application : déterminez la solution maximale du problème de Cauchy

$$y' = y + y^{1/3}, \ y(0) = 1.$$

(★★) Exercice 6 – Forme non résolue

Soit $y \in C^1(\mathbb{R})$ vérifiant, pour tout t réel, $y'(t)^2 = y(t)$.

- 1) Soient t_- , t_+ deux réels, $t_- \le t_+$, tels que $y(t_-) = y(t_+) = 0$. Montrez que y(t) = 0 pour tout t dans $[t_-, t_+]$.
- 2) Soit $t_0 \in \mathbb{R}$ tel que $y(t_0) \neq 0$ et $y'(t_0) > 0$. On note

$$T_{-} = \inf \left\{ T < t_{0}, \forall t \in [T, t_{0}], y(t) > 0 \right\}, \ T_{+} = \sup \left\{ T > t_{0}, \forall t \in [t_{0}, T], y(t) > 0 \right\}.$$

- (i) Montrez que y(t) > 0 pour tout t dans $]T_-, T_+[$.
- (ii) Montrez que y'(t) > 0 pour tout t dans T_-, T_+ .
- (iii) En déduire y sur T_-, T_+ , T_- et T_+ . On exprimera y en fonction de t et T_- .
- 3) Que dire si il existe $t_0 \in \mathbb{R}$ tel que $y(t_0) \neq 0$ et $y'(t_0) < 0$?
- 4) En déduire l'ensemble des fonctions $y \in C^1(\mathbb{R})$ telles que $y'(t)^2 = y(t)$ pour tout t réel. Déterminez l'ensemble des solutions de classe C^2 .

Résultats théoriques

 (\star) Exercice 7 – Exponentielle Dans cet exercice, nous allons définir l'exponentielle comme solution du problème de Cauchy

$$(\mathcal{P}_e)$$
 $y' = y, y(0) = 1.$

1) Se convaincre que les Sections 5.1 et 5.2 du Chapitre 5 du cours n'utilisent pas la fonction exponentielle.

À partir de maintenant, dans cet exercice, on utilisera uniquement les résultats des Sections 5.1 et 5.2 du Chapitre 5.

- 2) Montrez que le problème (\mathcal{P}_e) admet une unique solution maximale (J, y). Montrez que y est de classe C^{∞} sur J.
- 3) Montrez que pour tout t dans J, y(t) > 0.
- 4) Montrez que y est strictement croissante sur J. En déduire que $\inf(J) = -\infty$.

On suppose maintenant que $\sup(J) < \infty$, et on choisit $N \in \mathbb{N}$ tel que $N \ge \sup(J) + 10$. On définit alors

$$v_n: t \in [0, \sup(J)] \mapsto \left(1 - \frac{t}{N}\right)^N.$$

- 5) Montrez que v_n est de classe C^{∞} , strictement positive, et décroissante sur $[0, \sup(J)]$.
- 6) Montrez que $w:t\in [0,\sup(J)[\mapsto y(t)\,v_N(t)$ est décroissante. En déduire que y est bornée au voisinage de $\sup(J)$. Conclure.

On a donc montré que la solution (J, y) au problème de Cauchy (\mathcal{P}_e) est globale, autrement dit $J = \mathbb{R}$. Bien évidemment, y n'est autre que la fonction exponentielle. On peut alors s'amuser à remontrer toutes les propriétés vérifiées par cette fonction, comme par exemple :

- 7) Montrez que pour tout $(a,b) \in \mathbb{R} \times \mathbb{R}$, y(a+b) = y(a)y(b).
- (*) Exercice 8 Convergence vers un équilibre

Soit $f: \mathbb{R}^d \mapsto \mathbb{R}^d$ localement lipschitzienne.

- 1) Montrez que (\mathbb{R}, y_l) , où $y_l : t \in \mathbb{R} \mapsto l \in \mathbb{R}^d$ est une fonction constante, est solution de l'équation différentielle y' = f(y) si et seulement si $f(l) = 0_{\mathbb{R}^d}$.
- Si $f(l) = 0_{\mathbb{R}^d}$, on dit que l est un équilibre de l'équation différentielle.
- 2) On considère (J, y) une solution maximale de l'équation différentielle y' = f(y). On suppose que $\sup(J) = +\infty$ et qu'il existe $l \in \mathbb{R}^d$ tel que

$$\lim_{t \to \infty} y(t) = l.$$

Montrez que $f(l) = 0_{\mathbb{R}^d}$ (et donc que l est un équilibre de l'équation différentielle). Indication : on pourra étudier la fonction $g: t \in J \mapsto (y(t), f(l))_{\mathbb{R}^d}$.

(⋆) Exercice 9 − Croissance quadratique

Soit $f: I \times \mathbb{R}^d \to \mathbb{R}^d$ de classe C^1 . On suppose qu'il existe c_1 , c_2 deux fonctions continues de I dans \mathbb{R}_+ telles que, pour tout t dans I et tout $y \in \mathbb{R}^d$, on ait

$$|(f(t,y),y)_{\mathbb{R}^d}| \le c_1(t)||y||_{\mathbb{R}^d}^2 + c_2(t).$$

Montrez que toutes les solutions maximales de l'équation différentielle y' = f(t, y) sont globales.

(★★) Exercice 10 − Solutions périodiques

Soit $f: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}^d$ continue et localement lipschitzienne par rapport à la seconde variable. On suppose qu'il existe T > 0 tel que pour tout t réel, tout y de \mathbb{R}^d , on ait

$$f(t+T,y) = f(t,y).$$

Soit (J, y) une solution maximale de l'équation différentielle y' = f(t, y). On suppose qu'il existe t_0 dans J tel que $t_0 + T \in J$ et $y(t_0 + T) = y(t_0)$. Montrez que $J = \mathbb{R}$ et y est T-périodique.

(★★) Exercice 11 - Solution dans un compact

L'objectif de cet exercice est de proposer une preuve directe du Corollaire 5.23, n'utilisant pas le Théorème de sortie de compact, ni son alter-ego le Théorème d'explosion en temps fini.

Soit donc $f: I \times \Omega \to \mathbb{R}^d$ continue et localement lipschitzienne. On considère (J, y) une solution maximale de l'équation différentielle y' = f(t, y). On suppose qu'il existe \mathscr{K} compact de Ω tel que y(t) reste dans \mathscr{K} pour t proche de $\sup(J)$. L'objectif est de montrer que $\sup(J) = \sup(I)$.

On suppose $\sup(J) < \sup(I)$, et on fixe t_0 dans J.

- 1) Montrez que y' est borné sur $[t_0, \sup(J)]$.
- 2) En déduire que y est lipschitzienne sur $[t_0, \sup(J)]$.
- 3) En déduire qu'il existe $y_l \in \mathcal{K}$ tel que y(t) tend vers y_l quand t tend vers $\sup(J)$ par valeurs inférieures.
- 4) Montrez que y' tend vers $f(\sup(J), y_l)$ lorsque t tend vers $\sup(J)$ par valeurs inférieures.
- 5) Montrez que le problème de Cauchy

$$z' = f(t, z), \quad z(\sup(J)) = y_l,$$

admet une unique solution maximale (\tilde{J}, \tilde{y}) .

6) On définit

$$\mathscr{Y}: t \in J \cup \tilde{J} \mapsto \left\{ \begin{array}{l} y(t) \text{ si } t \in J, \\ \tilde{y}(t) \text{ si } t \in \tilde{J} \setminus J. \end{array} \right.$$

Montrez que $(J \cup \tilde{J}, \mathscr{Y})$ est solution de l'équation différentielle y' = f(t, y). Conclure.

Analyse qualitative

(*) Exercice 12 – Solutions bornées

Pour x_0 réel quelconque, on considère le problème de Cauchy

$$(\star)$$
 $y' = y \sin(y)^2$, $y(0) = x_0$.

- 1) Montrez que ce problème admet une unique solution maximale (J_0, y_0) .
- 2) Montrez que $J_0 = \mathbb{R}$ et y_0 est constante si et seulement si $x_0 = k \pi, k \in \mathbb{Z}$.
- 3) Montrez que pour tout $x_0 \in \mathbb{R}$, y_0 est bornée. En déduire que $J_0 = \mathbb{R}$.

Indication: on pourra remarquer qu'il existe $k \in \mathbb{Z}$ tel que $k \pi \leq x_0 < (k+1)\pi$.

- 4) Montrez que y_0 est monotone sur \mathbb{R} .
- 5) En déduire que y_0 admet des limites en $\pm \infty$. Quelles sont ces limites?

Indication: Exercice 8.

6) Pour $x_0 \in \mathbb{R}$, on note (\mathbb{R}, y_+) la solution de (\star) , et (\mathbb{R}, y_-) la solution de $y' = y \sin(y)^2$, $y(0) = -x_0$. Montrez que $y_- = -y_+$. (★) Exercice 13 − Faire un dessin

Soit $f:(t,y)\in\mathbb{R}\times\mathbb{R}\mapsto t^2+y^2$. On considère le problème de Cauchy

$$(\star)$$
 $y' = f(t, y), y(0) = 0.$

- 1) Montrez que (\star) admet une unique solution maximale (J, y).
- 2) On pose $\tilde{J} =]-\alpha, \beta[$, avec $\alpha, \beta > 0$, et on définit $\tilde{J} =]-\beta, \alpha[$, et $\tilde{y}: t \in \tilde{J} \mapsto -y(-t)$.
 - (i) Montrez que \tilde{y} est bien définie et de classe C^1 sur \tilde{J} .
 - (ii) Montrez que (\tilde{J}, \tilde{y}) est solution de (\star) . En déduire que $y = \tilde{y}$ sur $J \cap \tilde{J}$.
- (iii) On définit

$$\mathscr{Y}: t \in J \cup \tilde{J} \mapsto \left\{ \begin{array}{l} y(t) \text{ si } t \in J, \\ \tilde{y}(t) \text{ si } t \in \tilde{J}. \end{array} \right.$$

Montrez que \mathscr{Y} est bien définie. Montrez que $(J \cup \tilde{J}, \mathscr{Y})$ est solution de (\star) .

- (iv) En déduire que $\alpha = \beta$ et que y est impaire.
- 3) Étudier la monotonie et la convexité de y sur J.
- 4) Montrez que $y(t) = \frac{t^3}{3} + o(t^3)$.
- 5) On suppose que $\sup(J) = +\infty$. Montrez qu'il existe $c \in \mathbb{R}$ tel que pour tout $t \geq 1$, $\arctan(y(t)) \geq t + c$. Qu'en conclut-on?
- 6) Que vaut $\lim_{t\to\sup(J)} y(t)$?
- 7) Dessinez l'allure de la fonction y sur J.
- (★) Exercice 14 − Modèle logistique de population

Pour $\alpha > 0$, N > 0 et $n_0 \ge 0$, on considère le problème de Cauchy

$$(\star) \quad n' = \alpha n \left(1 - \frac{n}{N} \right), \ n(0) = n_0.$$

- 1) Démontrez que (\star) admet une unique solution maximale (J, n).
- 2) Quelles sont les $n_0 \ge 0$ tels que n soit constante?
- 3) On suppose $n_0 \in [0, N]$. Montrez que $J = \mathbb{R}$, déterminez la monotonie de n sur \mathbb{R} , ainsi que ses limites en $\pm \infty$.
- 4) On suppose $n_0 > N$. Montrez que $J =]-\beta, +\infty[$ pour un certain $\beta > 0$. Déterminez la monotonie de n sur J, ainsi que ses limites en $-\beta$ et $+\infty$.

Correction

Exercice 0 Montrons tout d'abord que F n'est pas globalement lipschitzienne. Si c'était le cas, on aurait L > 0 tel que pour tous x_1, x_2 dans \mathbb{R}^d , on a

$$|F(x_1) - F(x_2)| \le L||x_1 - x_2||_{\mathbb{R}^d}$$
.

Prenons $x_1=0$ et $x_2=\rho \tilde{x},$ avec $\|\tilde{x}\|_{\mathbb{R}^d}=1$ et $\rho>1.$ Il vient

$$|F(x_1) - F(x_2)| = |F(\rho \tilde{x})| = \rho^2,$$

alors que

$$||x_1 - x_2||_{\mathbb{R}^d} = ||\rho \tilde{x}||_{\mathbb{R}^d} = \rho.$$

On devrait donc avoir $\rho^2 \ge L \rho$ pour tout $\rho > 1$. Il suffit de choisir $\rho > \max(L, 1)$ pour obtenir une contradiction.

On va maintenant montrer que F n'est pas de classe C^1 . Supposons qu'elle le soit, et notons $DF(0_{\mathbb{R}^d})$ sa différentielle en zéro. Il vient, pour tout x dans \mathbb{R}^d ,

$$F(x) = F(0_{\mathbb{R}^d}) + DF(0_{\mathbb{R}^d})(x) + o(||x||_{\mathbb{R}^d}).$$

Fixons \tilde{x} tel que $\|\tilde{x}\|_{\mathbb{R}^d} = 1$. Pour $\rho \in [-1, 1]$, il vient

$$|\rho| = F(\rho \tilde{x}) = \rho \left(DF(0_{\mathbb{R}^d})(\tilde{x}) \right) + o(\rho).$$

En prenant $\rho > 0$, on obtient

$$1 = DF(0_{\mathbb{R}^d})(\tilde{x}) + o(1) \Rightarrow DF(0_{\mathbb{R}^d})(\tilde{x}) = 1.$$

En prenant $\rho < 0$, on obtient

$$-1 = DF(0_{\mathbb{R}^d})(\tilde{x}) + o(1) \Rightarrow DF(0_{\mathbb{R}^d})(\tilde{x}) = -1.$$

Contradiction.

Montrons maintenant que F est localement lipschitzienne. Notons tout d'abord

$$\Omega = \left\{ x \in \mathbb{R}^d, \ \|x\|_{R^d} > 1 \right\},$$

qui est un ouvert de \mathbb{R}^d . Pour $x = \begin{bmatrix} x_1 & x_2 & \dots & x_d \end{bmatrix} \in \Omega$, on a

$$F(x) = ||x||_{\mathbb{R}^d} = x_1^2 + x_2^2 + \ldots + x_d^2.$$

Ainsi, F est polynomiale en les coordonnées sur Ω , donc de classe C^{∞} , donc de classe C^{1} , donc localement lipschitzienne.

Soit maintenant $x \in \mathbb{R}^d$ tel que $||x||_{\mathbb{R}^d} < 1$. Soit $\eta_x = 1 - ||x||_{\mathbb{R}^d}$. Pour tout \tilde{x} dans $\mathcal{B}_{\eta_x}(x)$, on a

$$\|\tilde{x}\|_{\mathbb{R}^d} \le \|x\|_{\mathbb{R}^d} + \|\tilde{x} - x\|_{\mathbb{R}^d} < \|x\|_{\mathbb{R}^d} + \eta_x < 1,$$

et donc

$$|F(x) - F(\tilde{x})| = |\|x\|_{\mathbb{R}^d} - \|\tilde{x}\|_{\mathbb{R}^d}| \le \|x - \tilde{x}\|_{\mathbb{R}^d}.$$

Soit finalement $x \in \mathbb{R}^d$ tel que $||x||_{\mathbb{R}^d} = 1$, et $\rho = \frac{1}{2}$. Soit $\tilde{x} \in \mathcal{B}_{\rho}(x)$. Alors

— soit $\|\tilde{x}\|_{\mathbb{R}^d} \leq 1$, et alors par simple inégalité triangulaire,

$$|F(x) - F(\tilde{x})| = |||x||_{\mathbb{R}^d} - ||\tilde{x}||_{\mathbb{R}^d}| \le ||x - \tilde{x}||_{\mathbb{R}^d}.$$

— soit $\|\tilde{x}\|_{\mathbb{R}^d} \ge 1$. Il vient alors

$$|F(x) - F(\tilde{x})| = |1 - ||\tilde{x}||_{\mathbb{R}^d}^2 = ||\tilde{x}||_{\mathbb{R}^d}^2 - 1.$$

Écrivons alors $\tilde{x} = x + s e$, avec $s \in]0, \rho[$ et $||e||_{\mathbb{R}^d} = 1$. Il vient

$$\|\tilde{x}\|_{\mathbb{R}^d}^2 - 1 = s^2 + 2se \cdot x.$$

On voudrait donc choisir $L_x > 0$ assez grand tel que, pour tout s dans $]0, \rho[$, tout $e \in \mathbb{R}^d$, $||e||_{\mathbb{R}^d} = 1$, on ait

$$s^{2} + 2 s e \cdot x \le L_{x} \|\tilde{x} - x\|_{\mathbb{R}^{d}} = L_{x} s,$$

soit encore

$$0 \le s \left(L_x - 2 e \cdot x - s \right).$$

Comme $s \in]0, \rho[$ avec $\rho = \frac{1}{2}$, et $e \cdot x \leq ||e||_{\mathbb{R}^d} ||x||_{\mathbb{R}^d} \leq 1$, on peut choisir $L_x = 3$.

On a ainsi obtenu que pour tout $x \in \mathbb{R}^d$, $||x||_{\mathbb{R}^d} = 1$, pour tout $\tilde{x} \in \mathcal{B}_{\frac{1}{2}}(x)$, on a $|F(x) - F(\tilde{x})| \le 3||x - \tilde{x}||_{\mathbb{R}^d}$. Le résultat suit.

Exercice 1 Notons tout d'abord que les fonctions $f_1: y \in \mathbb{R} \mapsto y^2$ et $f_2: y \in \mathbb{R} \mapsto y|y|$ sont de classe C^1 , donc localement lipshitizienne. Ainsi, si on fixe (t_0, y_0) dans $\mathbb{R} \times \mathbb{R}$, le problème de Cauchy $y' = f_k(y), \ y(t_0) = y_0$ admet une unique solution maximale.

Commençons notre étude avec f_1 . On note que $(\mathbb{R}, 0)$ est solution maximale de l'équation différentielle $y' = y^2$. Donc si $y_0 \neq 0$, la solution maximale (J, y) de $y' = y^2$, $y(t_0) = y_0$ ne s'annule jamais. On peut donc diviser par y^2 , et on obtient, pour tout t dans J,

$$-\frac{d}{dt}\left(\frac{1}{y}\right)(t) = \frac{y'(t)}{y(t)^2} = 1 \Rightarrow y(t) = \frac{y_0}{1 - y_0(t - t_0)}.$$

Le dénominateur s'annule en $T_0 = t_0 + \frac{1}{y_0}$. Ainsi, on a

- si $y_0 > 0$, $J =]-\infty, T_0[$ et $y : t \in J \mapsto \frac{y_0}{1-y_0(t-t_0)}$.
- si $y_0 < 0$, $J =]T_0, \infty[$ et $y : t \in J \mapsto \frac{y_0}{1 y_0(t t_0)}$.
- si $y_0 = 0$, $J = \mathbb{R}$, et $y : t \in \mathbb{R} \mapsto 0$.

Regardons maintenant f_2 . Comme pour $y \ge 0$, $f_2(y) = f_1(y)$, on obtient les mêmes solutions pour $y_0 \ge 0$. Supposons donc $y_0 < 0$. La solution maximale (J, y) ne s'annule jamais, reste ainsi strictement négative, et donc vérifie $y' = -y^2$, $y(t_0) = y_0$. En procédant comme ci-dessus, on obtient que pour tout t dans J,

$$y(t) = \frac{y_0}{1 + y_0(t - t_0)}.$$

Le dénominateur s'annule en $\tilde{T}_0 = t_0 - \frac{1}{y_0}$. Ainsi,

- si $y_0 > 0$, $J =]-\infty$, $T_0[$ et $y : t \in J \mapsto \frac{y_0}{1-y_0(t-t_0)}$.
- si $y_0 < 0, J =]-\infty, \tilde{T}_0[$ et $y : t \in J \mapsto \frac{y_0}{1+y_0(t-t_0)}$.
- si $y_0 = 0$, $J = \mathbb{R}$, et $y : t \in \mathbb{R} \mapsto 0$.

Exercice 2

Comme $t^2 + 1 \neq 0$, le problème se réécrit sous forme résolue

$$(\star)$$
 $y' = f(t, y), y(0) = 1,$

avec

$$f:(t,y)\in\mathbb{R}\times\mathbb{R}\mapsto \frac{t+1}{t^2+1}y^2\in\mathbb{R}.$$

Comme f est de classe C^{∞} , elle est continue et localement lipschitzienne par rapport à la seconde variable, et (\star) admet une unique solution maximale (J, y).

Notons que $(\mathbb{R}, t \in \mathbb{R} \to 0)$ est aussi solution maximale de l'équation différentielle y' = f(t, y). Le Corollaire 5.15 du cours nous assure alors que pour tout t dans J, y(t) > 0. On a donc le droit de diviser par y^2 , et on obtient que pour tout t dans J,

$$\frac{y'(t)}{y(t)^2} = \frac{t+1}{t^2+1} \Leftrightarrow -\frac{d}{dt} \left(\frac{1}{y}\right)(t) = \frac{1}{2} \frac{2t}{t^2+1} + \frac{1}{t^2+1} = \frac{d}{dt} \left(\ln\left(\sqrt{.^2+1}\right) + \arctan(.)\right)(t).$$

En intégrant entre 0 et $t \in J$, on obtient

$$1 - \frac{1}{y(t)} = \ln\left(\sqrt{t^2 + 1}\right) + \arctan(t),$$

soit encore

$$y(t) = \left[1 - \ln\left(\sqrt{t^2 + 1}\right) - \arctan(t)\right]^{-1}.$$

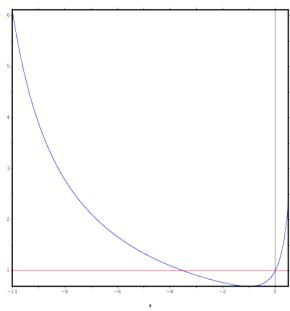
Reste à déterminer J. Par construction (pas besoin de refaire le calcul!), on a

$$\frac{d}{dt}\left(\ln\left(\sqrt{.^2+1}\right) + \arctan(.)\right)(t) = \frac{t+1}{t^2+1}.$$

Donc $g: t \in \mathbb{R} \mapsto \ln\left(\sqrt{t^2+1}\right) + \arctan(t)$ est strictement décroissante sur $]-\infty,-1]$ et strictement croissante sur $[-1,\infty[$. Comme $g(-\infty)=g(+\infty)=+\infty$ et

$$g(-1) = \ln(\sqrt{2}) + \arctan(-1) = \frac{\ln(2)}{2} - \frac{\pi}{4} < \frac{\ln(e)}{2} - \frac{3}{4} = -\frac{1}{4} < 0,$$

il existe un unique $T_- < 0$ et un unique $T_+ > 0$ tels que $g(T_-) = g(T_+) = 1$, et on a $J =]T_-, T_+[$. Numériquement, on trouve $T_- \sim -11.9906207773098$ et $T_+ \sim 0.8720993625058773$.



La fonction y sur [-10, 0.5].

Exercice 3

- 1) La fonction f_{α} est de classe C^{∞} , donc localement lipschitzienne. Comme $y_1 > 0$ est bien dans l'ensemble de définition de f_{α} , le problème admet une unique solution maximale (J, y).
- 2) Par définition, y ne s'annule pas. On peut donc diviser par y, pour obtenir

$$1 = \frac{y'}{y^{\alpha}} = \frac{d}{dt} \left(\frac{1}{1 - \alpha} y^{1 - \alpha} \right),$$

d'où l'on tire par intégration entre 1 et t, pour t dans J

$$t - 1 = \frac{y(t)^{1-\alpha} - y(1)^{1-\alpha}}{1-\alpha} \Rightarrow y(t) = \left[y_1^{1-\alpha} + (1-\alpha)(t-1)\right]^{\frac{1}{1-\alpha}}.$$

On a y solution tant que

$$y_1^{1-\alpha} + (1-\alpha)(t-1) > 0 \Leftrightarrow (1-\alpha)t > 1 - \alpha - y_1^{1-\alpha}.$$
 (4)

On a donc deux cas, selon le signe de $1 - \alpha$:

- soit $\alpha \in]0,1[$, et (\clubsuit) donne $t>T_1=1-\frac{y^{1-\alpha}}{1-\alpha},$ et donc $J=]T_1,+\infty[$
- soit $\alpha > 1$, et (\clubsuit) donne $t < T_1$, et donc $J =]-\infty, T_1[$.
- 3) Il faut de nouveau distinguer les cas $\alpha \in]0,1[$ et $\alpha > 1.$

Considérons le cas $\alpha \in]0,1[$. Alors $J=]T_1,\infty[$, et $\lim_{t\to\infty}y(t)=+\infty,\ \lim_{t\to T_1}y(t)=0.$

Dans le cas $\alpha > 1$, $J =]-\infty, T_1[$, et $\lim_{t\to -\infty} y(t) = 0$ et $\lim_{t\to T_1} y(t) = +\infty$.

Exercice 4

Il est clair que $(0, t \in \mathbb{R} \mapsto 0)$ est une solution globale du problème de Cauchy. L'erreur serait de prétendre que c'est la seule solution globale en invoquant Cauchy-Lipschitz. En effet, la fonction F_{α} n'est pas lipschitzienne au voisinage de zéro.

Soit donc (\mathbb{R}, y) une solution globale quelconque. Par l'équation différentielle, on a $y' \geq 0$ sur tout \mathbb{R} , donc nécessairement y est une fonction croissante. Comme par la condition initiale, y(0) = 0, il vient que $y(t) \leq 0$ pour tout $t \leq 0$. Mais par définition de F_{α} , on a, pour tout $t \leq 0$, $y'(t) = F_{\alpha}(y(t)) = 0$. Ainsi, f est constante sur $]-\infty,0[$, et comme y(0)=0, on a y=0 sur $]-\infty,0[$.

Toujours par croissance de $y, y(t) \ge y(0) = 0$ sur $[0, \infty[$. Supposons qu'il existe $t_1 > 0$ tel que $y(t_1) > 0$. Alors dans un voisinage de t_1, y satisfait l'équation différentielle $y' = y^{\alpha}$, que l'on sait résoudre par l'Exercice 3. On obtient

$$y(t) = [y(t_1)^{1-\alpha} + (1-\alpha)(t-t_1)]^{\frac{1}{1-\alpha}},$$

pour tout t dans $T_1, +\infty$, avec

$$T_1 = t_1 - \frac{y(t_1)^{1-\alpha}}{1-\alpha}.$$

On peut exprimer y en fonction de T_1 , ce qui donne

$$y(t) = [(1 - \alpha)(t - T_1)]^{\frac{1}{1 - \alpha}}, \ t \in]T_1, \infty[.$$

On sait par ailleurs que $\lim_{t\to T_{1,+}} y(t)=0$. Comme y=0 sur $]-\infty,0]$ et y>0 sur $]T_1,\infty[$, on a nécessairement $T_1\geq 0$.

Fixons alors $T_1 \geq 0$. Alors y définit par

$$y: t \in \mathbb{R} \mapsto \begin{cases} [(1-\alpha)(t-T_1)]^{\frac{1}{1-\alpha}}, \text{ pour } t > T_1, \\ 0, \text{ pour } t \leq T_1, \end{cases}$$

est bien définie, continue par construction, de classe C^1 sur $]-\infty, T_1[\cup]T_1, \infty[$, et vérifie $y'=F_{\alpha}(y)$ sur $]-\infty, T_1[\cup]T_1, \infty[$. Reste donc à regarder ce qu'il se passe en T_1 . Clairement, puisque y(t)=0 pour $t< T_1$,

$$\lim_{t \to T_{1,-}} \frac{y(t) - y(T_1)}{t - T_1} = 0.$$

Pour $t > T_1$, on a

$$\frac{y(t) - y(T_1)}{t - T_1} = \frac{[(1 - \alpha)(t - T_1)]^{\frac{1}{1 - \alpha}}}{t - T_1} = (1 - \alpha)^{\frac{1}{1 - \alpha}}(t - T_1)^{\frac{\alpha}{1 - \alpha}} \xrightarrow[t \to T_1]{} 0.$$

Ainsi, y est dérivable en T_1 , et $y'(T_1) = 0 = F_{\alpha}(y(T_1))$. Donc (\mathbb{R}, y) est solution de l'équation différentielle.

Au final, on a donc obtenu

$$S = \{ y \in C^1(\mathbb{R}), \ y' = F_{\alpha}(y) \} = \{ t \in \mathbb{R} \mapsto 0 \} \cup \{ y_T, \ T \ge 0 \},$$

où, pour tout $T \geq 0$, on a

$$y_T: t \in \mathbb{R} \mapsto \begin{cases} [(1-\alpha)(t-T)]^{\frac{1}{1-\alpha}}, \text{ pour } t > T, \\ 0, \text{ pour } t \leq T, \end{cases}$$

Exercice 5

1) La fonction f est continue sur $I \times]0, \infty[$. Soient t_0 dans I, et y_0 dans $]0, \infty[$. Soit $\delta > 0$ tel que $[t_0 - \delta, t_0 + \delta] \subset I$. Comme a et b sont continues sur I, il existe $M_0 > 0$ tel que pour tout t dans $[t_0 - \delta, t_0 + \delta]$, on ait $|a(t)| \leq M_0$ et $|b(t)| \leq M_0$. Comme l'application $y \in]0, \infty[\mapsto y^{\alpha}$ est de classe C^{∞} , elle est localement lipschitzienne. Il existe donc $\eta_0 > 0$ tel que $y_0 - \delta > 0$, et $L_0 > 0$ tel que pour tout (y_1, y_2) dans $[y_0 - \delta, y_0 + \delta]^2$, on ait $|y_1^{\alpha} - y_2^{\alpha}| \leq L_0|y_1 - y_2|$.

On a donc, pour tout t dans $[t_0 - \delta, t_0 + \delta]$, et tout (y_1, y_2) dans $[y_0 - \delta, y_0 + \delta]^2$,

$$|f(t,y_1) - f(t,y_2)| = |a(t)y_1 + b(t)y_1^{\alpha} - a(t)y_2 - b(t)y_2^{\alpha}|$$

$$\leq |a(t)||y_1 - y_2| + |b(t)||y_1^{\alpha} - y_2^{\alpha}| \leq M_0(1 + L_0)|y_1 - y_2|.$$

Ainsi, f est localement lipschitzienne par rapport à la seconde variable. Le Théorème de Cauchy-Lipschitz local assure l'existence et l'unicité de la solution maximale recherchée.

2) Par définition, pour tout t dans J, y(t) > 0. On peut donc définir

$$w(t) = y(t)^{1-\alpha} = \exp((1-\alpha)\ln(y(t))).$$

Par ailleurs, comme $y: J \mapsto]0, \infty[$ est de classe C^1 , et $g: x \in]0, \infty[\mapsto x^{1-\alpha}$ est aussi de classe C^1 , $w = q \circ y$ est de classe C^1 sur J. On peut donc dériver w, et on obtient

$$w' = (1 - \alpha)y'y^{-\alpha} = (1 - \alpha)(ay + by^{\alpha})y^{-\alpha} = (1 - \alpha)(ay^{1-\alpha} + b) = (1 - \alpha)(aw + b),$$

qui est une équation différentielle linéaire!

3) On pose $w(t) = y(t)^{2/3}$, qui vérifie l'équation différentielle

$$w' = \frac{2}{3}w + \frac{2}{3},$$

ainsi que la condition initiale w(0) = 1. La solution maximale du problème de Cauchy

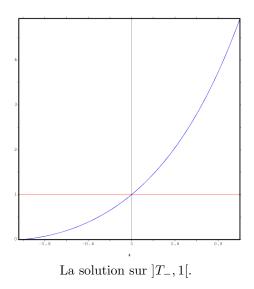
$$z' = \frac{2}{3}z + \frac{2}{3}, \ z(0) = 1,$$

est (\mathbb{R}, z) avec $z : t \in \mathbb{R} \mapsto 2\exp\left(\frac{2}{3}t\right) - 1$. Mais attention : comme on a posé $w = y^{2/3}$, on cherche une solution strictement positive, il nous faut donc restreindre l'intervalle de définition. Ainsi, z(t) > 0 si et seulement si $t \in]T_-, +\infty[$ avec

$$T_{-} = \frac{3}{2} \ln \left(\frac{1}{2} \right).$$

On en déduit que la solution (J, w) recherchée est $J =]T_-, +\infty[$ et $w = z_{|J}$. La solution du problème initial est alors $(]T_-, +\infty[, y)$ avec

$$y: t \in]T_-, +\infty[\mapsto \left(2\exp\left(\frac{2}{3}t\right) - 1\right)^{3/2}.$$



Exercice 6

1) Soit $t \in]t_-, t_+[$. Posons

$$\omega_- = \left\{ \tilde{t} \in [t_-, t], \ y(\tilde{t}) = 0 \right\}, \quad \omega_+ = \left\{ \tilde{t} \in [t, t_+], \ y(\tilde{t}) = 0 \right\}.$$

Comme $t_- \in \omega_-$ et $t_+ \tilde{\omega}_+$, ces deux ensembles sont non-vides. On définit alors

$$T_- = \sup(\omega_-), \quad T_+ = \inf(\omega_+).$$

Par définition, $t_{-} \leq T_{-} \leq t \leq T_{+} \leq t_{+}$. Il existe une suite (\tilde{t}_{n}) de ω_{-} qui tend vers T_{-} . Par définition, $y(\tilde{t}_{n}) = 0$, ce qui implique par continuité de y que $y(T_{-}) = 0$. De même, on a $y(T_{+}) = 0$.

Supposons alors $T_- < t < T_+$. Comme $y \in C^0([T_-, T_+]) \cap C^1([T_-, T_+])$ et $y(T_-) = y(T_+)$, on obtient par le théorème de Rolle l'existence de \tilde{T} dans $]T_-, T_+[$ tel que $y'(\tilde{T}) = 0$. Mais on a alors par l'équation différentielle $0 = y'(\tilde{T})^2 = y(\tilde{T})$, ce qui est en contradiction avec soit la définition de T_- , soit celle de T_+ , suivant la position de \tilde{T} par rapport à t. Donc soit $T_- = t$, soit $T_+ = t$, et dans les deux cas y(t) = 0 (on prouve au passage que $T_- = T_+ = t$).

Comme cela est vrai pour tout t dans $]t_-, t_+[$, le résultat suit.

- 2) Notons avant de commencer que comme par hypothèse, pour tout $t, y'(t)^2 = y(t)$, on a $y \ge 0$ sur \mathbb{R} . Ainsi, si $y(t_0) \ne 0$, alors $y(t_0) > 0$.
- (i) Soit t dans $]T,T_+[$, et supposone $t \geq t_0$ (l'autre cas se traite de même, mutatis mutandis). Par définition de T_+ , il existe T, $t_0 < T < T_+$, tel que pour tout $\tilde{t} \in [t_0,T]$, $y(\tilde{t}) > 0$. Mais t appartient à $[t_0,T]$. Le résultat suit.
- (ii) Supposons qu'il existe $t \in]T_-, T_+[$ tel que $y'(t) \leq 0$. Comme $y'(t_0) > 0$ et y' est continue par hypothèse, par le Théorème des valeurs intermédiaires, il existe \tilde{t} dans $[\min(t,t_0),\max(t,t_0)]$ tel que $y'(\tilde{t}) = 0$. Mais par l'équation différentielle, il vient $y(\tilde{t}) = y'(\tilde{t})^2 = 0$, en contradiction avec le point (i). Ainsi, y' > 0 sur $]T_-, T_+[$.
- (iii) Sur $]T_{-}, T_{+}[$, on a donc y > 0, y' > 0, et $(y')^{2} = y$. On a donc, pour tout t dans $]T_{-}, T_{+}[$,

$$y'(t)^2 = y(t) \Leftrightarrow |y'(t)| = \sqrt{y(t)} \underset{\text{car } y'>0}{\Longleftrightarrow} y'(t) = \sqrt{y(t)}.$$

Comme y > 0 sur $]T_-, T_+[$, on peut diviser par \sqrt{y} , puis intégrer entre t_0 et t, pour obtenir

$$\sqrt{y(t)} = \sqrt{y(t_0)} + \frac{t - t_0}{2},$$

ce qui donne, puisque y>0 sur $]T_-,T_+[,y(t)=\left[\sqrt{y(t_0)}+\frac{t-t_0}{2}\right]^2$. Ce raisonnement est valide tant que $\sqrt{y(t_0)}+\frac{t-t_0}{2}$ est strictement positif, ce qui ne pose pas de problème pour t plus grand que t_0 ,

donc $T_+ = +\infty$. On a une annulation pour t plus petit que t_0 , ce qui nous donne $T_- = t_0 - 2\sqrt{y(t_0)}$. Au final, on a donc, pour tout t dans $T_-, +\infty$

$$y(t) = \frac{(t - T_{-})^2}{4}.$$

Au final, on a montré que si $y(t_0)$ est strictement positive pour un certain instant t_0 , nécessairement il existe un réel $T_- < t_0$ tel que pour tout t dans $]T_-, +\infty[$, $y(t) = \frac{(t-T_-)^2}{4}$. 3) Par un raisonnement identique, il existe alors $T_+ > t_0$ tel que pour tout t dans $]-\infty, T_+[$, $y(t) = \frac{(t-T_-)^2}{4}$.

- 4) Soit T dans \mathbb{R} quelconque. Notons

$$y_T: t \in \mathbb{R} \mapsto \frac{(t-T)^2}{4}.$$

Clairement, $y_T(T) = 0$, $y'_T(T) = 0$ et $y''(T) = \frac{1}{2}$. On définit alors

$$y_{0T}: t \in \mathbb{R} \mapsto \left\{ \begin{array}{l} 0 \text{ si } t \leq T, \\ y_T(t) \text{ sinon,} \end{array} \right. \quad y_{T0}: t \in \mathbb{R} \mapsto \left\{ \begin{array}{l} 0 \text{ si } t \geq T, \\ y_T(t) \text{ sinon,} \end{array} \right.$$

et pour T_1, T_2 dans $\mathbb{R}, T_1 < T_2$,

$$y_{T_10T_2}: t \in \mathbb{R} \mapsto \begin{cases} y_{T_1} \text{ si } t \leq T_1, \\ 0 \text{ si } t \in]T_1, T_2[, \\ y_{T_2}(t) \text{ sinon.} \end{cases}$$

On voit que pour tout T, $T_1 < T_2$, y_T , y_{0T} , y_{T0} et $y_{T_10T_2}$ sont de classe C^1 sur \mathbb{R} , et par le raisonnement précédent, ce sont toutes les solutions non identiquement nulle de l'équation différentielle $(y')^2 = y$. Les seules solutions de classe C^2 sont la fonction nulle, et les fonctions y_T pour T réel quelconque.

Exercice 7

- 1) Je suis convaincu. Et vous?
- 2) La fonction $f: y \in \mathbb{R} \mapsto y$ est bien évidemment Lipschitzienne, le Théorème de Cauchy-Lipschitz local (Théorème 5.9) assure l'existence et l'unicité de (J, y) solution maximale de (\mathcal{P}_e) . Par définition, y est de classe C^1 sur J. Par l'équation différentielle, on en déduit que y'=y est aussi de classe C^1 sur J, donc y est de classe C^2 sur J. Une récurrence immédiate donne alors le résultat.
- 3) On voit que (\mathbb{R}, y_0) , où y_0 est la fonction constante nulle, est aussi solution de l'équation différentielle y'=y, et on a $y_0(0)=0 < y(0)=1$. Par le Corollaire 5.15, on en déduit que $y>y_0$ sur $J\cap \mathbb{R}=J$, ce qui donne le résultat.
- 4) On vient de voir que y > 0 sur J. Comme y' = y, on a aussi y' > 0 sur J, et donc y est strictement croissante sur J. En particulier, pour tout $t \leq 0$, on a $0 < y(t) \leq y(0) = 1$, donc $y(t) \in [0,1]$ pour tout t dans $\inf(J)$, 0]. Ainsi, y reste dans le compact [0, 1] pour t proche de $\inf(J)$. Le Théorème de sortie des compacts (plus précisément son Corollaire 5.23) donne alors $\inf(J) = -\infty$.
- 5) v_N est polynomiale donc de classe C^{∞} . Comme $0 \le t \le \sup(J) < N$, on a $1 \frac{t}{N} > 0$, et donc $v_N(t) > 0$ pour tout t dans $[0, \sup(J)]$. Finalement, pour t dans $[0, \sup(J)]$

$$v_N'(t) = -\left(1 - \frac{t}{N}\right)^{N-1} < 0,$$

et donc v_N est strictement décroissante sur $[0, \sup(J)]$.

6) Pour t dans $]0, \sup(J)[$, on a

$$w'(t) = (y v_N)'(t) = y'(t) v_N(t) + y(t) v_N'(t) = y(t) \left(v_N'(t) + v_N(t)\right)$$
$$= y(t) \left(1 - \frac{t}{N}\right)^{N-1} \left(1 - \frac{t}{N} - 1\right) = -\frac{t}{N} y(t) \left(1 - \frac{t}{N}\right)^{N-1} < 0.$$

Ainsi w est strictement décroissante sur $[0, \sup(J)]$. On en déduit que pour tout t dans $[0, \sup(J)]$,

$$1 = w(0) \ge w(t) = y(t)v_N(t) \Rightarrow y(t) \le \frac{1}{v_N(t)} \le \frac{1}{v_N(\sup(J))}.$$

Comme par ailleurs $y(t) \ge 1$ pour t dans $[0, \sup(J)[$, il vient que y reste dans le compact $[1, v_N(\sup(J))^{-1}]$ pour t proche de $\sup(J)$, ce qui implique par le Corollaire 5.23 que $\sup(J) = \infty$, en contradiction avec l'hypothèse.

Donc $\sup(J) = +\infty$, et la solution est donc globale.

7) Fixons b dans \mathbb{R} , et posons

$$y_1: a \in \mathbb{R} \mapsto y(a+b), \quad y_2: a \in \mathbb{R} \mapsto y(a) y(b).$$

Un simple calcul montre que (\mathbb{R}, y_1) et (\mathbb{R}, y_2) satisfont le problème de Cauchy

$$z' = z, \quad z(0) = y(b).$$

Or ce problème admet une unique solution maximale. Donc $y_1 = y_2$.

Exercice 8

1) Supposons (\mathbb{R}, y_l) solution de l'équation différentielle. On a alors, pour tout t réel,

$$0_{\mathbb{R}^d} = y'(t) = f(y(t)) = f(l).$$

Réciproquement, on voit que si $f(l) = 0_{\mathbb{R}^d}$, et comme y_l est constante, on a bien $y'_l = f(y_l)$, et donc (\mathbb{R}, y_l) est solution de l'équation différentielle.

2) Comme indiqué, on considère $g: t \in J \mapsto (y(t), f(l))_{\mathbb{R}^d} \in \mathbb{R}$, qui est une fonction de classe C^1 sur J, avec $g'(t) = (y'(t), f(l))_{\mathbb{R}^d}$. On note alors que comme f est continue et y satisfait y' = f(y),

$$\lim_{t \to \infty} y'(t) = \lim_{t \to \infty} f(y(t)) = f\left(\lim_{t \to \infty} y(t)\right) = f(l).$$

On a donc

$$\lim_{t\to\infty}g(t)=(l,f(l))_{\mathbb{R}^d},\quad \lim_{t\to\infty}g'(t)=\|f(l)\|_{\mathbb{R}^d}^2.$$

Ainsi, g et g' admettent une limite finie en $+\infty$, ce qui implique (Exercice 1 de la feuille de Td 1)

$$||f(l)||_{\mathbb{R}^d}^2 = \lim_{t \to \infty} g'(t) = 0.$$

Exercice 9 – Soit (J, y) une solution maximale de l'équation différentielle y' = f(t, y). Soit $t_0 \in J$. On pose

$$g: t \in J \mapsto \frac{1}{2} ||y(t)||_{\mathbb{R}^d}^2 \in \mathbb{R},$$

qui est de classe C^1 sur J, et vérifie, pour tout t dans J,

$$g'(t) = (y'(t), y(t))_{\mathbb{R}^d} = (f(t, y(t)), y(t))_{\mathbb{R}^d}.$$

On en déduit, pour tout t dans J,

$$g(t) = g(t_0) + \int_{t_0}^t (f(t, y(s)), y(s))_{\mathbb{R}^d} ds,$$

ce qui donne immédiatement

$$g(t) \leq g(t_0) + \left| \int_{t_0}^t \left(f(t, y(s)), y(s) \right)_{\mathbb{R}^d} ds \right| \leq g(t_0) + \int_{t_0}^t \left| \left(f(t, y(s)), y(s) \right)_{\mathbb{R}^d} \right| ds$$

$$\leq g(t_0) + \int_{t_0}^t \left(c_1(s) \|y(s)\|_{\mathbb{R}^d}^2 + c_2(s) \right) ds \leq g(t_0) + \int_{t_0}^t c_2(s) ds + \int_{t_0}^t 2 c_1(s) g(s) ds.$$

Supposons alors $\sup(J) < \sup(I)$. Comme c_2 est continue sur I à valeurs positives, il vient, pour tout $t \ge t_0$,

$$\int_{t_0}^t c_2(s) \, ds \le \int_{t_0}^{\sup(J)} c_2(s) \, ds < \infty,$$

et donc, toujours pour $t \geq t_0$,

$$g(t) \le g(t_0) + \int_{t_0}^{\sup(J)} c_2(s) \, ds + \int_{t_0}^t 2 \, c_1(s) g(s) \, ds.$$

Par Grönwall, on a donc, pour tout $t \geq t_0$,

$$g(t) \le \left(g(t_0) + \int_{t_0}^{\sup(J)} c_2(s) \, ds\right) \exp\left(\int_{t_0}^t 2 \, c_1(s) \, ds\right).$$

Comme c_1 est continue sur I à valeurs positives, on a

$$\int_{t_0}^t 2 c_1(s) ds \le \int_{t_0}^{\sup(J)} 2 c_1(s) ds < \infty,$$

ce qui donne alors

$$\frac{1}{2} \|y(t)\|_{\mathbb{R}^d} = g(t) \le \left(g(t_0) + \int_{t_0}^{\sup(J)} c_2(s) \, ds \right) \exp\left(\int_{t_0}^{\sup(J)} 2 \, c_1(s) \, ds \right).$$

Ainsi y est bornée au voisinage de $\sup(J)$, donc $\sup(J) = \sup(I)$: contradiction. Conclusion: $\sup(J) = \sup(I)$, et on obtient par un raisonnement similaire $\inf(J) = \inf(I)$.

Exercice 10 – Notons $J_T = \{t \in \mathbb{R}, t - T \in J\}$. On voit que $J \cap J_T \neq \emptyset$ puisque $t_0 + T$ est dans J et J_T . Posons alors

$$y_T: t \in J_T \mapsto y(t-T) \in \mathbb{R}^d$$
.

Alors y_T est de classe C^1 sur J_T , comme composée de la fonction $t \in J_T \mapsto t - T \in J$ et de $y : J \mapsto \mathbb{R}^d$, toutes deux fonctions de classe C^1 sur leurs intervalles respectifs. On voit que pour tout t dans J_T ,

$$y'_T(t) = \frac{d}{dt}(y(t-T)) = y'(t-T) = f(t-T, y(t-T)) = f(t, y(t-T)) = f(t, y_T(t)),$$

et par ailleurs $y_T(t_0+T)=y(t_0+T-T)=y(t_0)=y(t_0+T)$. Ainsi, (J,y) et (J_T,y_T) sont toutes deux solutions du problème du Cauchy

$$z' = f(t, z), \ z(t_0 + T) = y(t_0 + T).$$

Comme f est continue et localement lipschitzienne par rapport à la seconde variable, on en déduit que $y_T = y$ sur $J \cap J_T$. On vérifie alors comme d'habitude que

$$z: t \in J \cup J_T \mapsto \begin{cases} y \text{ si } t \in J, \\ y_T \text{ si } t \in J_T, \end{cases}$$

est bien définie, de classe C^1 , et que $(J \cup J_T, z)$ est solution du problème de Cauchy

$$z' = f(t, z), \ z(t_0) = y(t_0).$$

Comme (J,y) est solution maximale du même problème, comme $J\subset J\cup J_T$ et $z_{|J}=y$, on en déduit $J=J_T\cup J$. Ainsi, tout t dans J_T est dans J, ce qui revient à

$$t \in J \Rightarrow t + T \in J$$
,

ce qui implique immédiatement $\sup(J) = +\infty$. En faisant le même raisonnement dans J_{-T} , on obtient $\inf(J) = -\infty$, ce qui termine l'exercice.

Exercice 11

1) Comme $\sup(J) \in I$, f est continue $\sup[t_0, \sup(J)] \times \mathcal{K}$ qui est un compact, on peut donc poser

$$M = \max_{(t,y)\in[t_0,\sup(J)]\times\mathscr{K}} \|f(t,y)\|_{\mathbb{R}^d}.$$

Il vient, pour tout t dans $[t_0, \sup(J)[, (t, y(t)) \in [t_0, \sup(J)] \times \mathcal{K}, \text{ et donc}]$

$$||y'(t)||_{\mathbb{R}^d} = ||f(t, y(t))||_{\mathbb{R}^d} \le M.$$

2) C'est direct : pour tout (t_1, t_2) dans $[t_0, \sup(J)]$, on a

$$||y(t_1) - y(t_2)||_{\mathbb{R}^d} = \left\| \int_{t_1}^{t_2} y'(s) \, ds \right\|_{\mathbb{R}^d} \le \left| \int_{t_1}^{t_2} ||y'(s)||_{\mathbb{R}^d} \, ds \right| \le M|t_1 - t_2|.$$

3) Il s'agit en fait de montrer (si vous ne le savez pas) qu'une fonction lipschitzienne sur un intervalle [a,b[, avec $b < \infty$, admet une limite finie en b.

Montrons-le dans le cas présent. Soit $(t_n)_{n\in\mathbb{N}}$ une suite d'éléments de $[t_0, \sup(J)]$ ayant pour limite $\sup(J)$ lorsque n tend vers $+\infty$. Posons $y_n = y(t_n)$. Par hypothèse, $(y_n)_{n\in\mathbb{N}}$ est une suite d'éléments de \mathscr{K} compact, il existe donc une sous-suite (toujours notée y_n) et $y_l \in \mathscr{K}$ tel que

$$\lim_{n\to\infty}y_n=y_l.$$

On note toujours la suite d'instant correspondant t_n . On a donc

$$\lim_{n \to \infty} y(t_n) = \lim_{n \to \infty} y_n = y_l.$$

Soit maintenant $\varepsilon > 0$. On fixe $N \in \mathbb{N}$ tel que

$$|t_N - \sup(J)| \le \frac{\varepsilon}{3M}, \quad ||y(t_n) - y_l||_{\mathbb{R}^d} \le \frac{\varepsilon}{3},$$

et on pose $\eta = \frac{\varepsilon}{3M}$. Alors, pour tout $t \in J$, $|t - \sup(J)| \le \eta$, on a

$$||y(t) - y_l||_{\mathbb{R}^d} \le ||y(t) - y(t_N)||_{\mathbb{R}^d} + ||y(t_N) - y_l||_{\mathbb{R}^d} \le M ||t - t_N|| + \frac{\varepsilon}{3}$$

$$\le M (|t - \sup(J)| + |t_N - \sup(J)|) + \frac{\varepsilon}{3} \le \varepsilon.$$

Le résultat suit.

4) C'est direct par continuité de f en $(\sup(J), y_L) \in I \times \Omega$. On a en effet, pour tout $t \in [t_0, \sup(J)]$,

$$y'(t) = f(t, y(t)) \xrightarrow[t \to \sup(J)]{} f(\sup(J), y_l).$$

- 5) C'est une application directe du Théorème de Cauchy-Lipschitz, la fonction f étant continue et localement lipschitzienne par rapport à la seconde variable.
- 6) Par définition, $\sup(J) \in \tilde{J}$. Notons que par construction, $\mathscr{Y} \in C^1(J), \mathscr{Y} \in C^1(\tilde{J} \setminus \overline{J})$, et on a

$$\mathscr{Y}'(t) = f(t, \mathscr{Y}(t)), \ \forall t \in J \cup \tilde{J} \setminus \overline{J}.$$

Des problèmes peuvent donc seulement apparaı̂tre en $\sup(J)$. On a

$$\lim_{t \to \sup(J)_{-}} \mathscr{Y}(t) = \lim_{t \to \sup(J)_{-}} y(t) = y_{l} = \tilde{y}(\sup(J)) = \mathscr{Y}(\sup(J)) = \lim_{t \to \sup(J)_{+}} \tilde{y}(t) = \lim_{t \to \sup(J)_{+}} \mathscr{Y}(t),$$

ainsi \mathcal{Y} est continue en $\sup(J)$. De même

$$\lim_{t \to \sup(J)_{-}} \mathscr{Y}'(t) = \lim_{t \to \sup(J)_{-}} y'(t) = \lim_{t \to \sup(J)_{-}} f(t, y(t)) = f(\sup(J), y_{l}) = f(\sup(J), \mathscr{Y}(\sup(J))) = \tilde{y}'(\sup(J))$$
$$= \lim_{t \to \sup(J)_{+}} \tilde{y}'(t) = \lim_{t \to \sup(J)_{+}} \mathscr{Y}'(t).$$

Donc \mathscr{Y} est dérivable en $\sup(J)$, de dérivée $\mathscr{Y}'(\sup(J)) = f(\sup(J), \mathscr{Y}(\sup(J)))$. Ainsi, on a bien $(J \cup \tilde{J}, \mathscr{Y})$ solution de l'équation différentielle y' = f(t,y). Or $J \subset J \cup \tilde{J}$, et par définition $\mathscr{Y}_{|J} = y$. Comme (J,y) est solution maximale de l'équation différentielle, il vient $J = J \cup \tilde{J}$. Mais c'est impossible, car $\sup(J) \notin J$ et $\sup(J) \in J \cup \tilde{J}$. Contradiction.

On en déduit que $\sup(J) = \sup(I)$, et on retrouve le Corollaire 5.23.

Exercice 12

- 1) La fonction $f: y \in \mathbb{R} \mapsto y \sin(y)^2$ est de classe C^{∞} , donc localement lipschitzienne. Le théorème de Cauchy-Lipschitz assure donc l'existence et l'unicité de la solution maximale de (\star) .
- 2) On suppose $J_0 = \mathbb{R}$ et $y_0 : t \in \mathbb{R} \mapsto c \in \mathbb{R}$. Alors

$$y_0' = 0 = c \sin(c)^2,$$

et donc $c = k \pi$, $k \in \mathbb{Z}$. En particulier, $x_0 = y_0(0) = c = k \pi$.

Réciproquement, supposons $x_0 = k \pi$, $k \in \mathbb{Z}$. Alors, $(\mathbb{R}, y : t \in \mathbb{R} \mapsto k \pi)$ est solution maximale de (\star) , puisque

$$y'(t) = 0 = (k\pi) \sin(k\pi)^2 = y(t) \sin(y(t))^2, \ \forall t \in \mathbb{R}.$$

Par unicité de la solution maximale, on a $J_0 = \mathbb{R}$ et $y_0 = y$.

- 3) Soit $k \in \mathbb{Z}$ tel que $k\pi \le x_0 < (k+1)\pi$. Pour $c \in \mathbb{R}$, on note $\mathscr{Y}_c : t \in \mathbb{R} \mapsto c$. Alors $(\mathbb{R}, \mathscr{Y}_{k\pi})$ et $(\mathbb{R}, \mathscr{Y}_{(k+1)\pi})$ sont deux solutions maximales de l'équation différentielle $y' = y \sin(y)^2$. Comme $\mathscr{Y}_{k\pi}(0) \le y_0(0) = x_0 < \mathscr{Y}_{(k+1)\pi}(0)$, on a, pour tout t dans J_0 , $\mathscr{Y}_{k\pi}(t) \le y_0(t) \le \mathscr{Y}_{(k+1)\pi}(t)$. On a donc, pour tout t dans J_0 , $y_0(t) \in [k\pi, (k+1)\pi]$. Ainsi, y_0 est borné aux voisinages de $\sup(J_0)$ et $\inf(J_0)$, et donc $J_0 = \mathbb{R}$.
- 4) Comme $(\mathbb{R}, \mathcal{Y}_0)$ est solution maximale de l'équation différentielle $y' = y \sin(y)^2$, on a $x_0 \ge 0 \Rightarrow y_0(t) \ge 0$ (resp. $x_0 \le 0 \Rightarrow y_0(t) \le 0$) pour tout t réel. Ainsi :
 - si $x_0 \ge 0$, alors $y'(t) = y(t)\sin(y(t))^2 \ge 0$ pour tout t réel : y est croissante,
 - si $x_0 \le 0$, alors $y'(t) = y(t)\sin(y(t))^2 \le 0$ pour tout t réel : y est décroissante.
- 5) Si $x_0 = k \pi$, $k \in \mathbb{Z}$, alors $y_0 = \mathscr{Y}_{k\pi}$, elle est donc constante. Donc

$$\lim_{t \to -\infty} y_0(t) = \lim_{t \to \infty} y_0(t) = k \pi.$$

Supposons qu'il existe $k \geq 0$ tel que $k\pi < x_0 < (k+1)\pi$. Alors y est dans $[k\pi, (k+1)\pi]$ (question 3) et croissante (question 4), elle admet donc des limites en $\pm \infty$, que nous noterons l_{\pm} . Notons que nécessairement, $l_{\pm} \in [k\pi, (k+1)\pi]$, et $l_{-} \leq x_0 \leq l_{+}$. D'après l'Exercice 8, ces limites sont des équilibres de l'équation différentielle, donc il existe $m_{\pm} \in \mathbb{Z}$ tel que $l_{\pm} = m_{\pm}\pi$. On a donc nécessairement $l_{+} = (k+1)\pi$ et $l_{-} = k\pi$.

Si maintenant il existe $k \leq 0$ tel que $(k-1)\pi < x_0 < k\pi$, un raisonnement similaire montre que

$$\lim_{t \to \infty} y_0(t) = (k-1)\pi, \quad \lim_{t \to -\infty} = k \pi.$$

6) Notons $z: t \in \mathbb{R} \mapsto -y_+(t)$. Alors $z(0) = -y_+(0) = -x_0$, et pour tout t réel,

$$z'(t) = -y'_{+}(t) = -y_{+}(t)\sin(y_{+}(t))^{2} = -y_{+}(t)\sin(-y_{+}(t))^{2} = z(t)\sin(z(t))^{2}.$$

Ainsi, (\mathbb{R}, z) est solution maximale du problème de Cauchy $y' = y \sin(y)^2$, $y(0) = -x_0$. Par unicité de la solution maximale, on obtient $z = y_-$, ce qui termine l'exercice.

Exercice 13

1) Clairement, f est polynomiale en t et y, donc C^{∞} , donc continue et localement lipschitzienne par rapport à la seconde variable. On peut aussi simplement le montrer directement. Ainsi, soit y_0 dans \mathbb{R} . Posons $\mathcal{V}_0 = [-2|y_0|, 2|y_0|]$. Soient $t \in \mathbb{R}$ et y_1, y_2 dans \mathcal{V}_0 . Il vient

$$|f(t,y_1) - f(t,y_2)| = |t^2 + y_1^2 - t^2 - y_2^2| = |y_1^2 - y_2^2| = |y_1 + y_2||y_1 - y_2| \le 4|y_0||y_1 - y_2|.$$

D'après le Théorème de Cauchy-Lipschitz local, il vient que (\star) admet une unique solution maximale. 2)

(i) On peut écrire $\tilde{y} = z \circ s$, où $s : t \in \tilde{J} \mapsto -t \in J$ est de classe C^{∞} , et $z : t \in J \mapsto -y(t) \in \mathbb{R}$ est de classe C^{1} . Ainsi, \tilde{y} est bien définie de \tilde{J} dans \mathbb{R} , et de classe C^{1} .

(ii) On note tout d'abord que 0 = -0, et donc $0 \in \tilde{J}$, et on a $\tilde{y}(0) = y(-0) = 0$. Par ailleurs, pour tout t dans \tilde{J} .

$$\tilde{y}'(t) = \frac{d}{dt}(z \circ s)(t) = s'(t)z'(s(t)) = -z'(s(t)) = y'(s(t)) = s(t)^2 + y(s(t))^2$$
$$= (-t)^2 + (-z(s(t)))^2 = t^2 + \tilde{y}(t)^2.$$

On a donc bien (\tilde{J}, \tilde{y}) solution de (\star) , ce qui implique (Proposition 5.14) $y = \tilde{y}$ sur $J \cap \tilde{J}$.

(iii) Il n'y a pas d'ambiguïté dans la définition de $\mathscr Y$ puisque $y=\tilde y$ sur $J\cap \tilde J$. Par ailleurs, $\mathscr Y$ est continue sur J (resp. sur $\tilde J$) puisqu'elle y est égale à y (resp. $\tilde y$). Elle est donc continue sur $J\cup \tilde J$. Soit t dans $J\cup \tilde J$. Alors, soit t est dans J, et donc $[\min(0,t),\max(0,t)]\subset J$, ce qui implique

$$\mathscr{Y}(t) = y(t) = \int_0^t f(s, y(s)) ds = \int_0^t f(s, \mathscr{Y}(s)) ds,$$

soit t est dans \tilde{J} , et alors par un raisonnement identique

$$\mathscr{Y}(t) = \tilde{y}(t) = \int_0^t f(s, \tilde{y}(s)) ds = \int_0^t f(s, \mathscr{Y}(s)) ds.$$

Ainsi, $(J \cup \tilde{J}, \mathscr{Y})$ est solution de (\star) .

(iv) On a : (J, y) solution maximale de (\star) , $(J \cup \tilde{J}, \mathscr{Y})$ solution de (\star) , $J \subset J \cup \tilde{J}$ et $\mathscr{Y}_{|J} = y$. On a donc $J = J \cup \tilde{J}$, soit encore $] - \alpha, \beta[=] - \max(\alpha, \beta), \max(\alpha, \beta)[$. On en déduit directement que $\alpha = \beta$.

On a alors $J = \tilde{J}$, et donc par (ii), pour tout t dans J, $y(t) = \tilde{y}(t) = -y(-t)$: y est impaire.

3) Pour tout t dans J, $y'(t) = t^2 + y(t)^2 \ge 0$ donc y est croissante. On peut même dire plus : pour tout t dans J, $t \ne 0$, $y'(t) = t^2 + y(t)^2 > 0$, donc y est strictement croissante sur J. En particulier, pour tout t dans J, t > 0, on a y(-t) < y(0) = 0 < y(t).

Par ailleurs, $t \in J \mapsto t^2 + y(t)^2$ est de classe C^1 , donc y est de classe C^2 , et pour tout t dans J,

$$y''(t) = 2t + 2y'(t)y(t) = 2t + 2y(t)(t^2 + y(t)^2).$$

Ainsi, pour t > 0 dans J, y''(t) > 0, pour t < 0 dans J, y''(t) < 0, et y''(0) = 0. Ainsi, y est strictement convexe sur $J \cap [0, \infty[$, strictement concave sur $J \cap [-\infty, 0[$, et présente un point d'inflexion en zéro.

4) Par une récurrence immédiate, on voit que y est de classe C^{∞} sur J. On peut alors faire un développement de Taylor-Young de y en zéro :

$$y(t) = y(0) + ty'(0) + \frac{t^2}{2}y''(0) + \frac{t^3}{6}y'''(0) + o(t^3).$$

On a déjà vu que y(0) = y'(0) = y''(0) = 0. Par ailleurs,

$$y'''(0) = \frac{d}{dt}(2t + 2y(t)(t^2 + y(t)^2))_{|t=0} = 2.$$

Le résultat suit.

5) Pour $t \ge 1$, on a $y'(t) = t^2 + y(t)^2 \ge 1 + y(t)^2$. Comme $1 + y(t)^2 > 0$, il vient

$$\frac{y'(t)}{1+y(t)^2} = \frac{d}{dt} (\arctan(y))(t) \ge 1,$$

et donc, par intégration entre 1 et $t \geq 1$,

$$\arctan(y(t)) \ge \arctan(y(1)) + (t-1) = t + \underbrace{\arctan(y(1)) - 1}_{-2}$$
.

Comme $\arctan(y(t)) \leq \frac{\pi}{2}$, on devrait avoir $t + c \leq \frac{\pi}{2}$ pour tout $t \geq 1$, ce qui est absurde. On en déduit que $\sup(J) < +\infty$.

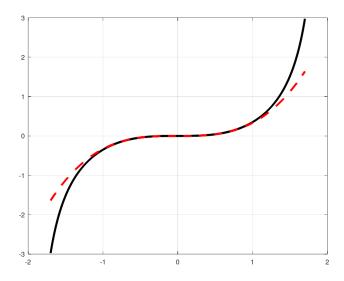
6) Comme $\sup(J) < \infty$, le Théorème d'Explosion en temps fini nous donne

$$\lim_{t \to \sup(J)} |y(t)| = +\infty.$$

Comme de plus y est strictement croissante, nécessairement

$$\lim_{t \to \sup(J)} y(t) = +\infty.$$

7) À vos stylos! Notez qu'on a, pour t > 0, $y(t) > \frac{t^3}{3}$, ce qui fournit une nouvelle information pour le dessin.



La fontion y en trait plein noir, obtenue par résolution numérique de l'équation différentielle. Pour comparaison, la fonction $t \in \mathbb{R} \mapsto \frac{t^3}{3}$ en tirets rouges.

Exercice 14

- 1) L'application $n \in \mathbb{R} \mapsto \alpha n \left(1 \frac{n}{N}\right)$ est polynomiale, donc de classe C^{∞} , donc localement lipschitzienne. On peut donc appliquer le théorème de Cauchy-Lipschitz, qui donne le résultat.
- 2) Supposons $(J, n : t \in J \mapsto n_0)$ soit une solution de (\star) . Notons qu'alors nécessairement $J = \mathbb{R}$. Par ailleurs, on aura pour tout t,

$$0 = n'(t) = \alpha n(t) \left(1 - \frac{n(t)}{N} \right) = \alpha n_0 \left(1 - \frac{n_0}{N} \right),$$

ce qui implique $n_0 = 0$ ou $n_0 = N$. Ainsi, n est constante si et seulement si $n_0 = 0$ ou $n_0 = N$.

3) On sait par la question précédente que si $n_0 = 0$ (resp. $n_0 = N$), alors n est constante égale à 0 (resp. égale à N), ce qui répond à la question.

On suppose donc $n_0 \in]0, N[$, ce qui implique immédiatement (Corollaire 5.15) que pour tout t dans J, on a 0 < n(t) < N. Ainsi la solution reste dans le compact [0, N] pour tout t, elle est donc globale : $J = \mathbb{R}$.

Comme pour tout réel t, on a 0 < n(t) < N, il vient directement n'(t) > 0, et donc n est strictement croissante. Comme elle est borné, elle admet des limites finies en $\pm \infty$, qui sont d'après le résultat de l'Exercice 8 des équilibres de l'équation différentielle. On en déduit que

$$\lim_{t \to -\infty} n(t) = 0, \ \lim_{t \to \infty} n(t) = N.$$

4) Si $n_0 > N$, alors, toujours par le Corollaire 5.15, n(t) > N pour tout t dans J. Ainsi, n'(t) < 0, et donc n est strictement décroissante sur J. En particulier, pour tout $t \in J \cap [0, \infty[$, on a $n_0 \ge n(t) > N$, ce qui implique par le Théorème de sortie des compacts $\sup(J) = \infty$. Comme n est décroissante et minorée, elle admet une limite finie en $+\infty$. L'Exercice 8 implique alors directement que $n(t) \xrightarrow[t \to \infty]{} N$. Notons que, toujours car n(t) > N > 0, on a, pour tout t dans J,

$$n'(t) = \alpha n(t) - \alpha \frac{n(t)^2}{N} > -\alpha \frac{n(t)^2}{N} \Rightarrow \frac{n'(t)}{n(t)^2} > -\frac{\alpha}{N}.$$

En intégrant entre 0 et t, il vient

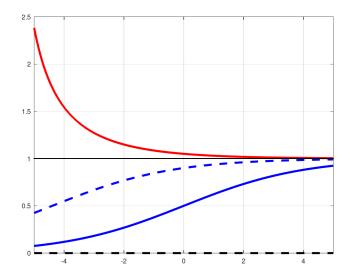
$$-\frac{1}{n(t)}+\frac{1}{n_0}>-\frac{\alpha t}{N}\Rightarrow n(t)>\frac{n_0}{1+\alpha\frac{n_0}{N}\,t}.$$

Comme

$$\lim_{t \to -\frac{N}{\alpha n_0}} \frac{n_0}{1 + \alpha \frac{n_0}{N} t} = +\infty,$$

nécessairement $\inf(J) = -\beta > -\infty$. Le Théorème d'Explosion en temps fini nous donne alors $|n(t)| \xrightarrow[t \to -\beta]{} +\infty$. Comme par ailleurs n est strictement positive, on obtient $n(t) \xrightarrow[t \to -\beta]{} +\infty$.

Remarque : il existe une autre approche pour résoudre l'Exercice, qui consiste... à résoudre l'équation différentielle $n' = \alpha n \left(1 - \frac{n}{N}\right)$.



La fonction $g: t \in J \mapsto \frac{n(t)}{N}$ pour t dans [-5,5], qui satisfait le problème de Cauchy $g' = \alpha g(1-g)$, $g(0) = \frac{n_0}{N}$, pour $\alpha = 0.5$ et différentes valeurs de g(0). En noir plein, g(0) = 1, en noir pointillé, g(0) = 0, en bleu plein, g(0) = 0.5, en bleu pointillé, g(0) = 0.9, en rouge, g(0) = 1.05 (dans ce dernier cas, $\beta < -5$).